Т  И  Н  Е  Й  Д  Ж  Е  Р  Ы

Для тех, кто учится и учит


Главная Мой профиль Выход                      Вы вошли как Гость | Группа "Гости" | RSS
Пятница, 26.04.2024, 20:53:15
» МЕНЮ САЙТА
» ОТКРЫТЫЙ УРОК

 РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

НАЧАЛЬНАЯ ШКОЛА

УКРАИНСКИЙ ЯЗЫК

ИНОСТРАННЫЕ ЯЗЫКИ

УКРАИНСКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА

МАТЕМАТИКА

ИСТОРИЯ

ОБЩЕСТВОЗНАНИЕ

БИОЛОГИЯ

ГЕОГРАФИЯ

ФИЗИКА

АСТРОНОМИЯ

ИНФОРМАТИКА

ХИМИЯ

ОБЖ

ЭКОНОМИКА

ЭКОЛОГИЯ

ФИЗКУЛЬТУРА

ТЕХНОЛОГИЯ

МХК

МУЗЫКА

ИЗО

ПСИХОЛОГИЯ

КЛАССНОЕ РУКОВОДСТВО

ВНЕКЛАССНАЯ РАБОТА

АДМИНИСТРАЦИЯ ШКОЛЫ

» РУССКИЙ ЯЗЫК
МОНИТОРИНГ КАЧЕСТВА ЗНАНИЙ. 5 КЛАСС

ОРФОЭПИЯ

ЧАСТИ РЕЧИ


ТЕСТЫ В ФОРМАТЕ ОГЭ.
   5 КЛАСС


ПУНКТУАЦИЯ В ЗАДАНИЯХ И
  ОТВЕТАХ


САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ.10 КЛАСС


КРОССВОРДЫ ПО РУССКОМУ
  ЯЗЫКУ
» ЛИТЕРАТУРА
ВЕЛИЧАЙШИЕ КНИГИ ВСЕХ
  ВРЕМЕН И НАРОДОВ


КОРИФЕИ ЛИТЕРАТУРЫ

ЛИТЕРАТУРА В СХЕМАХ И
  ТАБЛИЦАХ


ТЕСТЫ ПО ЛИТЕРАТУРЕ

САМЫЕ ИЗВЕСТНЫЕ МИФЫ И
  ЛЕГЕНДЫ


КРОССВОРДЫ ПО ЛИТЕРАТУРЕ
» ИСТОРИЯ
» АНГЛИЙСКИЙ ЯЗЫК
ИНОСТРАННЫЕ ЯЗЫКИ.
  РАЗГОВОРНЫЕ ТЕМЫ


САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
  ПО АНГЛИЙСКОМУ ЯЗЫКУ


ТЕСТЫ ПО ГРАММАТИКЕ
  АНГЛИЙСКОГО ЯЗЫКА


ТЕМАТИЧЕСКИЙ КОНТРОЛЬ.
  9 КЛАСС


ПОДГОТОВКА К ЕГЭ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ


КРОССВОРДЫ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ
» МАТЕМАТИКА - ЦАРИЦА НАУК
» БИОЛОГИЯ
» ГЕОГРАФИЯ
» ФИЗИКА
» Категории раздела
УДИВИТЕЛЬНАЯ АСТРОНОМИЯ [30]
УДИВИТЕЛЬНАЯ КОСМОЛОГИЯ [19]
АСТРОНОМИЯ В ВОПРОСАХ И ОТВЕТАХ [21]

И тьма пришла

Предыдущая глава почти целиком была посвящена далекому прошлому нашей Вселенной. Картина вырисовывается странная, нелепая и немного пугающая: огромный мир, населенный бесчисленным множеством звезд и галактик, возник буквально из ничего, практически из пустоты, из какой-то ничтожной квантовой флуктуации. Однако и в современном состоянии Вселенной тоже хватает странностей, и первое место среди них по праву принадлежит загадке скрытой массы, которую называют также темной материей, и темной энергии (не путать со скрытой массой).

Наблюдения двух последних десятилетий показали, что на долю обычного видимого вещества – протонов, нейтронов, электронов и фотонов – приходится не более 4 % гравитационной массы-энергии Вселенной (то есть массы-энергии, создающей гравитационное поле). Остальные 96 % – это некая загадочная субстанция, которая не излучает и не поглощает света, а ее присутствие можно обнаружить только лишь по создаваемому ею гравитационному полю. Она никак не взаимодействует с обычной материей, так что эпитет «темная» следует признать не совсем удачным: с таким же успехом ее можно было назвать «прозрачной» или «невидимой». Другими словами, величественный хоровод небесных светил, который испокон веков изучали дотошные астрономы, на поверку оказался ничтожной надводной частью айсберга, покоящейся на незримой темной глыбе неведомо чего. О физической природе этого бесплотного, но весьма увесистого призрака современная наука не может сказать ничего определенного. Более того, совсем недавно выяснилось, что темная изнанка нашего мира неоднородна и распадается, в свою очередь, на две компоненты, весьма различные по своим свойствам: темную материю (она же – скрытая масса), составляющую примерно 25 % суммарной массы-энергии, и темную энергию (71 %). Однако обо всем по порядку.

Первый звоночек, свидетельствующий о том, что не все ладно в датском королевстве, прозвенел еще в 1933 году, когда американский астроном швейцарского происхождения Фриц Цвикки задумал измерить полную массу группы галактик по их светимости. Он поступил просто: подсчитал количество звезд в каждой галактике и умножил это число на среднюю массу звезды. Казалось бы, надежный и проверенный метод. Однако другой подход, основанный на законе всемирного тяготения и оценке скоростей звезд, дал несопоставимо большую величину массы. Цвикки подметил крайне любопытные аномалии в движении отдельных галактик внутри скопления. Любая случайно взятая галактика двигалась таким образом, словно общая масса скопления значительно превосходила сумму масс входящих в него галактик. Поскольку сей изрядный «довесок» невидим и может быть обнаружен только по характеру гравитационных возмущений, Цвикки предложил назвать его темной материей.

В то время научная общественность отреагировала на предложение Цвикки довольно вяло, и только 40 лет спустя о скрытой массе заговорили вновь. В 70-х годах прошлого века аномалии, подобные тем, какие обнаружил американский астроном, были выявлены в спиральных галактиках. Как известно, спиральные галактики в отличие от галактик другого типа (эллиптических и неправильных) вращаются, однако это вращение не имеет ничего общего с вращением детского волчка или юлы. Галактика не является сплошным твердым телом, а состоит из десятков миллиардов звезд, каждая из которых движется сама по себе, описывая замкнутую кривую вокруг галактического центра. Отсюда следует, что в соответствии с законами небесной механики скорость звезды по мере ее удаления от центра должна падать. Во всяком случае, планеты Солнечной системы ведут себя именно так: чем дальше планета отстоит от Солнца, тем ниже ее орбитальная скорость.

А вот движение звезд в спиральных галактиках по непонятной причине этому непреложному закону не подчиняется. Астрономические наблюдения свидетельствуют о том, что скорость всех звезд, начиная с некоторого расстояния от центра, становится постоянной величиной. Как разрешить эту малоприятную ситуацию? Положа руку на сердце, выбор у нас невелик. Одно из двух: либо массы галактик оцениваются неверно, либо законы Ньютона не универсальны и могут при определенных условиях нарушаться. Второй вариант выглядит слишком экстравагантно и большинством ученых всерьез не рассматривается, хотя отдельные еретики от физики допускают такую возможность. Скажем, израильтянин М. Мильгром сравнительно недавно предложил гипотезу, получившую название модифицированной ньютоновой динамики (МОНД). Согласно этой гипотезе, движение звезд, облаков межзвездного газа и других объектов во внешних слоях спиральных галактик подчиняется не закону Ньютона, а более общему закону, куда ньютонова механика входит как частный случай. Ускоренное движение звезд объясняется тем, что на больших расстояниях от галактического центра обычный закон Ньютона не выполняется, поскольку сила тяготения приобретает иную величину.

Тем не менее большинство специалистов точку зрения Мильгрома не разделяют. Модифицированная динамика не только грешит множеством откровенных натяжек, но и плохо согласуется с данными наблюдательной астрономии (так, она не в силах объяснить характер движения вещества в скоплениях галактик). Поэтому почти все астрофизики склонны объяснять аномалии в движении звезд присутствием невидимой (темной) материи, которая подобно огромному сферическому облаку окутывает каждую галактику. Расчеты показывают, что в случае нашей галактики диаметр такого гало должен быть не менее 300 тысяч световых лет, то есть в три раза превосходит диаметр Млечного Пути.

Но какова все-таки физическая природа этой необычной субстанции, на долю которой, как мы помним, приходится 25 %, – в шесть с лишним раз больше, чем обычного вещества, излучающего свет? Во-первых, кандидатами на роль носителей скрытой массы могут быть компактные тела, так называемые массивные астрофизические компактные объекты в гало Галактики – Massive Astrophysical Compact Halo Objects (MACHO). К числу таких темных образований относятся черные дыры, коричневые карлики, старые нейтронные звезды, облака из слабо взаимодействующих частиц и, возможно, белые карлики. Все они не должны светиться, в противном случае их бы давным-давно обнаружили. Коричневые карлики – это нечто среднее между газовыми планетами-гигантами и небольшими легкими звездами. Масса такого объекта не должна превышать 10 % массы Солнца, иначе внутри него вспыхнут термоядерные реакции, которые приведут к излучению света. Черные дыры и нейтронные звезды, претендующие на роль компактных объектов, тоже должны удовлетворять определенным условиям. Первые не имеют права быть слишком массивными, поскольку излучение от падающего на них вещества немедленно выдаст их с головой, а вторые должны иметь весьма солидный возраст, так как только старые нейтронные звезды практически не излучают и потому невидимы.

Под действием сил гравитации темная материя распределяется неравномерно, попросту говоря, скучивается, подобно обычной материи, и астрономы изучают характер этого распределения различными методами – по кривым вращения галактик, их крупномасштабной структуре, гравитационному линзированию и так далее. Под последним понимается возникновение ложных изображений, так как поля тяготения скрытой массы искажают траекторию движения света от далеких источников. Однако наблюдения показывают, что одних только компактных объектов явно недостаточно для успешного разрешения проблемы темной материи. Поэтому физики, занимающиеся изучением элементарных частиц, полагают, что феномен скрытой массы связан в первую очередь с так называемыми WIMP – Weakly Interacting Massive Particles (слабо взаимодействующими массивными частицами). Эти гипотетические частицы пока не обнаружены, и то обстоятельство, что они крайне слабо взаимодействуют с веществом, создает большие трудности для доказательства их существования. Такие частицы иногда называют холодной, или нерелятивистской, темной материей, поскольку они движутся со скоростями, много меньшими, чем скорость света. Однако их неторопливость с лихвой искупается весьма приличной весомостью, ибо масса слабо взаимодействующих частиц в 1000 и более раз превосходит массу атома водорода.

Кстати, помимо холодной, во Вселенной присутствует и горячая темная материя в виде реликтовых нейтрино с ненулевой массой покоя, но их вклад в полную гравитационную массу-энергию не превышает полутора процентов. Как мы видим, работы у астрофизиков еще непочатый край, но сомневаться в реальном существовании темной материи сегодня уже не приходится, поскольку именно она вносит основной вклад в массу галактик.

Но еще более загадочными свойствами обладает темная энергия, на долю которой приходится 71 % полной массы-энергии Вселенной. В отличие от скрытой массы, она не скучивается под действием гравитации, но строго равномерно и однородно заполняет все пространство Вселенной, подобно идеальной сплошной среде, и всюду и всегда имеет постоянную плотность. Гипотеза темной энергии (которая, строго говоря, стала в наши дни полноправной теорией) появилась в 1998 году, когда две международные группы астрономов сообщили об открытии ускоренного расширения Вселенной. Этот фундаментальный факт, значение которого трудно переоценить, был установлен при наблюдениях за далекими сверхновыми звездами определенного типа (типа Ia). Такие сверхновые имеют исключительно высокую светимость, сопоставимую со светимостью целых галактик, в которых они вспыхивают, а потому хорошо видны на межгалактических расстояниях.

Кроме того, уникальной особенностью сверхновых типа Ia является тот факт, что их собственная светимость в максимуме блеска лежит в очень узких пределах. Другими словами, мощность излучения звезд этого типа практически идентична, и потому их принято называть «стандартными свечами». Из школьного курса физики известно, что поток светового излучения убывает обратно пропорционально квадрату расстояния от источника. Таким образом, измеряя на Земле блеск сверхновой, вспыхнувшей в далекой галактике, и сравнивая его с реальной собственной светимостью источника (которая известна), можно вычислить расстояние до объекта. Особенно важны вспышки сверхновых типа Ia в очень далеких галактиках, поскольку становятся значимыми космологические эффекты и можно не только определить постоянную Хаббла, но и измерить параметр плотности Вселенной, то есть установить ее геометрию.

Наблюдательные данные по сверхновым типа Ia, накопленные к настоящему времени, позволяют с вероятностью 99 % утверждать, что Вселенная расширяется ускоренно. Причем весьма любопытно, что режим стандартного хаббловского расширения поменялся не вчера и не сегодня, а по крайней мере несколько миллиардов лет назад. Точную дату назвать трудно, но если верить архивным фотоснимкам звездного неба, наиболее удаленная от нас «стандартная свеча» горит на расстоянии в 10 миллиардов световых лет от планеты Земля. Ее светимость идеально вписывается в параметры фридмановской модели, из чего следует заключить, что еще 10 миллиардов лет тому назад Вселенная продолжала расширяться классически – в полном соответствии с законом Хаббла. Однако характер блеска более молодых сверхновых не позволяет усомниться в том, что 7–8 миллиардов лет назад темная энергия возобладала над силами гравитации и Вселенная стала расширяться быстрее.

Складывается впечатление, что динамикой мироздания управляет некое «распирающее» поле. Пока объем Вселенной сравнительно невелик, гравитация эффективно противодействуют расширению пространства, но рано или поздно наступает такой момент, когда плотность вещества падает ниже некоторой критической величины и поле, плотность которого со временем не меняется, начинает все энергичнее раздувать пространство. Более того, темп расширения оказывается в точности таким, что заставляет вспомнить пресловутую «лямбду», космологическую постоянную, которую Эйнштейн ввел в уравнения общей теории относительности еще в 1917 году. Вселенная Эйнштейна была статичной, и лямбда-член понадобился ему для того, чтобы уравновесить стягивающую силу гравитации универсальным космологическим отталкиванием: в противном случае вся материя должна неминуемо собраться в кучу. Сам Эйнштейн свою «лямбду» терпеть не мог и впоследствии называл введение лямбда-члена «самой большой ошибкой жизни». Однако после того как в 1922–1924 годах ленинградский математик А. А. Фридман нашел нестационарное решение уравнений Эйнштейна, а американский астроном Эдвин Хаббл в 1929-м обнаружил красное смещение в спектрах далеких галактик, стало ясно, что Вселенная с момента своего рождения непрерывно эволюционирует, и про неудобную «лямбду» благополучно забыли. Забвение растянулось больше чем на 40 лет, и только на рубеже 60—70-х годов прошлого века о космологической постоянной заговорили снова. Из работ отечественных физиков-теоретиков Э. Б. Глинера, А. А. Старобинского, Я. Б. Зельдовича и некоторых других следовало, что вакуум может обладать ненулевой энергией. В этом случае гипотеза космологической постоянной эквивалентна представлению об идеально однородной среде, равномерно заполняющей всю Вселенную. Свойства такой среды весьма необычны: ее давление выражается отрицательной величиной, а плотность неизменна во времени и пространстве. А коль скоро давление отрицательно, то при постоянной плотности оно будет создавать антигравитационный эффект, ускоряя расширение Вселенной. Поэтому вполне вероятно, что темная энергия есть не что иное, как проявление вакуумных полей с отрицательным давлением.

Вам это ничего не напоминает, читатель? Тогда вернитесь к началу прошлой главы, в которой речь шла о космологической инфляции – периоде сверхбыстрого расширения новорожденной Вселенной. Гипотетическое инфлатонное поле, эффективно раздувавшее пространство около точки «ноль», имело точно такие же характеристики – предельно сильное отрицательное давление и постоянную плотность, не меняющуюся со временем. Поэтому мы вправе предположить, что инфлатонное поле никуда не делось, а продолжает присутствовать в нашей Вселенной. Тогда темная энергия как раз и будет таким полем, находящимся в минимуме своего потенциала. Между прочим, отсюда вытекает важное следствие: эпоха инфляции качественно совершенно аналогична той, к которой наша Вселенная приближается сегодня. Бесспорно, разница между ними есть, но она носит сугубо количественный характер. Понятно, что на заре истории, в стадии раздувания все значения кривизны пространства-времени и эффективной плотности энергии были в колоссальное число раз больше, чем сейчас, но принципиальных отличий между этими двумя эпохами не усматривается.

Итак, до 1998 года можно было с уверенностью говорить о трех компонентах материи, равномерно заполняющих пространство Вселенной. Во-первых, это обычное вещество – протоны, нейтроны и электроны, из которых построены звезды, планеты и такая малость, как мы с вами. Во-вторых, это таинственная темная материя (скрытая масса), состоящая из нерелятивистских частиц, не излучающая света и практически не взаимодействующая с обычным веществом. Наконец, в-третьих, это «остаточное» излучение – реликтовые фотоны и нейтрино, сохранившиеся как отголосок горячего начала нашего мира. Не обнаруженные до сих пор гравитоны и некоторые другие ультра-релятивистские частицы тоже попадают в эту категорию. Эти три ипостаси мироздания обеспечивают всемирное тяготение, а вот четвертая компонента, на долю которой приходится две трети полной плотности современной Вселенной, выявлена совсем недавно и создает феномен универсального космологического отталкивания. Так что судьбой мира управляет некая сплошная среда с положительной постоянной плотностью и отрицательным давлением, причем в абсолютном выражении эти две величины равны между собой.

Относительно физической природы этой загадочной субстанции мы на сегодняшний день не можем сказать почти ничего. Если трактовать ее как своего рода космологическую постоянную, мы неизбежно упираемся в ювелирную точность исходных параметров, ту самую тонкую настройку, которая давно навязла в зубах. Получается, что начальная потенциальная энергия Вселенной была рассчитана настолько безукоризненно, что по мере последующего «спокойного» расширения сумела обеспечить такую критическую плотность нашего мира, которая сделала пространство почти идеально плоским. «Почему антигравитационное действие темной энергии проявилось лишь в то время, когда стали возникать галактики?» – спрашивают некоторые астрофизики. Правда, эти неувязки снимаются в сценарии хаотической инфляции А. Д. Линде: космологическая постоянная может принимать разные значения, и только там, где существуют звезды, галактики и вообще сложные структуры, она приобретает такую величину, которая допускает появление вопрошающего субъекта. Другими словами, темная энергия неравномерно распределена в пространстве, а потому версию божественного промысла можно со спокойной душой закрыть. В тех уголках мироздания, где значение космологической постоянной по воле слепого случая оказалось иным, спрашивать о ювелирной подгонке параметров попросту некому.

Между тем далеко не все физики готовы согласиться с такой постановкой вопроса и полагают, что плотность темной энергии имеет не вакуумную природу и может со временем меняться. Скажем, американцы Пол Стейнхардт и Ричард Колдуэлл думают, что под маской темной энергии прячется особое квантовое поле, которое может принимать переменные значения. В память об античных мыслителях они назвали его квинтэссенцией. Как известно, древние считали, что слагаемыми мироздания являются четыре стихии – земля, вода, огонь и воздух, но неугомонный Аристотель дополнил эту номенклатуру пятой сущностью – квинтэссенцией, из которой якобы состоят эфирные тела. В споры высоколобых теоретиков мы соваться не станем, а отметим только, что вопрос о физической природе темной энергии пока еще весьма далек от окончательного разрешения. Так или иначе, но ведущая роль темной энергии в эволюции Вселенной в наши дни сомнений уже не вызывает. Чем бы она ни являлась на микроскопическом уровне – особой энергией вакуума или геометрическим радикалом, вложенным в мироздание, – но факт остается фактом: на протяжении нескольких миллиардов лет наша Вселенная расширяется ускоренно, и тон этому расширению задает именно темная энергия – некая субстанция с отрицательным давлением и постоянной плотностью.

Исходя из вышесказанного, всю историю Вселенной можно разбить на четыре эпохи и описать четырехчленной формулой следующего вида:…ДС(И) – ФИ – ФМ – ДС… Первое звено этой формулы обозначает фазу инфляции (буква «И» в скобках), а сочетание «ДС» указывает на де-ситтеровский характер расширения. Хотя о голландском астрономе Виллеме Ситтере мы уже упоминали, необходимо сделать небольшое пояснение. Он был одним из первых ученых, признавших общую теорию относительности, однако стационарная модель Эйнштейна его не устраивала. Вселенная Эйнштейна описывалась римановой геометрией и представляла собой четырехмерную гиперсферу, аналогом которой в трех измерениях может быть поверхность резиновой камеры или воздушного шарика. Такая Вселенная замкнута на себя и не имеет границ, хотя ее объем конечен. Луч света, если он не встречает препятствий, распространялся бы в такой модели по окружности (точнее, по геодезической линии, ибо кратчайшим путем между двумя точками на поверхности сферы является именно такая кривая).

Ситтер предложил динамическую модель пустой и непрерывно расширяющейся Вселенной, похожую на воздушный шарик, который все время надувают. По мере раздувания диаметр шарика постоянно растет, а его геометрия, продолжая оставаться римановской, все более и более приближается к геометрии Евклида. Другими словами, пространство в такой Вселенной становится все более плоским, а луч света движется не по окружности, а по непрерывно расширяющейся спирали. Однако Ситтеру крупно не повезло. Он слишком сильно опередил свое время, и его гипотеза осталась в памяти современников изящным и остроумным математическим казусом. Вселенная Ситтера расширялась по экспоненте (то есть в геометрической прогрессии в зависимости от времени), что в ту пору (в 1917 году) противоречило наблюдениям. А вот предложенная несколькими годами позже модель А. А. Фридмана настаивала на том, что объекты удаляются друг от друга со скоростью, прямо пропорциональной расстоянию до них.

Сегодня мы понимаем, что это противоречие мнимое. И Фридман был не дурак, и Ситтер тоже не лаптем щи хлебал: каждый был по-своему прав. В эпоху инфляции пространство росло экспоненциально – в полном соответствии с выкладками Ситтера. А когда энергия поля, распирающего Вселенную, упала до минимума, режим расширения сразу же поменялся. И на стадии излучения (ФИ-фаза), когда Вселенная была раскаленным сгустком горячей плазмы, и на стадии рекомбинации (ФМ-фаза), когда излучение отделилось от вещества, наш мир расширялся пропорционально – по закону Фридмана – Хаббла. А вот когда Вселенная изрядно подросла и остыла, темная энергия снова вступила в свои права. Несколько миллиардов лет тому назад наступила эпоха доминирования темной энергии, которая продолжается до сих пор, и Вселенная снова начала расширяться ускоренно. А поскольку по своим динамическим параметрам современная эпоха почти ничем не отличается от стадии инфляции, А. А. Старобинский предложил назвать ее де-ситтеровской (аббревиатура ДС в правой части формулы).

Между прочим, проблема темной энергии имеет весьма любопытный философский аспект. До того момента, как сила универсального космологического отталкивания стала доминирующей, а Вселенная начала расширяться ускоренно, успело произойти много разных событий. Прежде чем выйти на режим ускоренного расширения, мир пережил эпоху инфляции (ДС(И) – стадия), фазу излучения (ФИ-стадия) и фазу доминирования темной материи (ФМ-стадия), когда излучение отделилось от вещества. Следовательно, мы имеем полное право предположить, что и фазе инфляции в левой части формулы предшествовали некие события.

А. А. Старобинский пишет:

Все 4 стадии и переходы между ними, включенные в эту формулу, могут быть рассчитаны теоретически и исследованы по существующим наблюдательным данным. Однако можно ли думать, что эта цепь заключает в себе всю эволюцию нашей Вселенной в прошлом и будущем? Полагаю, что нет. Как раз наоборот, замечательная качественная аналогия между ДС(И) – и ДС-стадиями, объясненная выше, подсказывает нам, что эта цепь – лишь маленький кусочек чего-то существенно большего, может быть, даже бесконечного. Посмотрим вдоль формулы справа налево. Мы видим, что перед ДС-стадией была длинная и разнообразная предыстория. Тогда естественно ожидать, что и ДС(И) – стадия имела свою предысторию (многоточие слева от формулы). Теперь взглянем слева направо. Очевидно, что ДС(И) – стадия была неустойчивой, первичная темная энергия распалась в другие (в том числе в обычные) виды материи. Почему тогда современная темная энергия обязана быть стабильной и не может превращаться в другие виды материи в будущем (многоточие справа от формулы)?

Разумеется, продолжительность ДС-стадии многократно превышает фазу инфляции, поскольку квантовые системы с меньшей полной энергией гораздо более устойчивы. Что же касается доинфляционной истории нашего мира, то большинство современных космологических моделей запрещают многоточие слева от формулы и настаивают на возникновении Вселенной из ничего (from nothing). Однако, по мнению А. А. Старобинского, существует бесчисленное множество других сценариев, в которых ДС(И) – стадии предшествует нечто. Он пишет, что вместе с Я. Б. Зельдовичем они сформулировали прямо противоположную концепцию рождения Вселенной «из чего угодно» (from anything), однако, ввиду крайнего ее экстремизма, не рассматривает ее подробно. Одним словом, попытки узнать, что предшествовало фазе инфляции, не прекращаются, и быть может, нас ждет на этом пути еще много интересных открытий. Так или иначе, но мир оказался неизмеримо сложней, чем представлялось ученым еще каких-нибудь 30 лет назад.

А что можно сказать об отдаленном будущем нашей Вселенной? Что век грядущий нам готовит? На этот вопрос существует несколько ответов, ибо физическая природа темной энергии – до сих пор тайна за семью печатями. В простейшем случае, если энергия вакуума положительна и не меняется со временем, Вселенная будет расширяться неограниченно. Ночное небо начнет мало-помалу пустеть, так как все больше объектов будет уходить за горизонт событий, и через 10–20 миллиардов лет в распоряжении человечества останутся наша Галактика (Млечный Путь), соседняя туманность Андромеды да еще несколько галактик из так называемой Местной группы. Через 1014 лет перестанут рождаться новые звезды и во Вселенной останутся только тела, почти не дающие света, – белые и коричневые карлики, нейтронные звезды и черные дыры. Но в конце концов погаснут и умрут все звезды, и через 1037 лет в непомерно раздувшемся космосе нельзя будет найти ничего, кроме черных дыр и элементарных частиц. Но ведь ничто не вечно. За счет квантовых процессов черные дыры все-таки излучают, хотя и очень медленно, а потому рано или поздно они тоже испарятся. Это событие произойдет, когда возраст Вселенной составит 10100 лет, и все мироздание окажется заполненным чрезвычайно разреженным газом из стабильных элементарных частиц – электронов, трех сортов нейтрино и, возможно, протонов. Мир вновь станет пуст, как библейская земля в начале начал, поскольку расстояние между двумя частицами будет намного превосходить размеры современной Вселенной.

Что и говорить, душераздирающее зрелище. Однако это еще цветочки, потому что существуют куда более катастрофические сценарии нашего далекого будущего. Один из них показывает, что в мире вообще ничего не останется. Дело в том, что если обычное расширение Вселенной в виде непрерывного прироста ее пространства не порождает никаких сил, действующих на физические тела, то темная энергия ведет себя совершенно иначе. Ускоренное раздувание аналогично появлению некоей силы, растягивающей все объекты. Сегодня ее величина исчезающе мала – в 1030 раз слабее тяготения на поверхности Земли. Если ускорение будет неуклонно нарастать по экспоненте, то, в конце концов, дело закончится не только разрушением всех физических тел, но даже элементарных частиц, из которых построена вся материя. Вселенная превратится в распухающее ничто, опустеет в самом буквальном смысле слова. Эта модель, получившая название Большого разрыва (Big Rip по-английски), была предложена в 2003 году в статье Р. Р. Колдвелла, М. Камионковского и H. Н. Вайнберга «Фантомная энергия и космический конец света». Однако не все так безнадежно: другие астрофизики, например уже знакомый нам Стивен Хокинг, полагают, что расширение рано или поздно сменится сжатием. Откровенно говоря, подобная перспектива тоже не сулит человечеству ничего хорошего, но это уже отдельная песня.

Впрочем, «грядущие годы таятся во мгле», как однажды написал классик, а потому не станем гадать на кофейной гуще, но оборотимся лицом к прошлому В предыдущей главе поминалась теория суперструн, которая вроде бы непротиворечиво увязывает в одно целое квантовую механику и общую теорию относительности. Настало время поговорить о ней подробнее, тем более что струнные теории в разных изводах сегодня весьма популярны и очень живо обсуждаются.

Для начала вспомним о четырех типах фундаментальных взаимодействий – электромагнитном, сильном, слабом и гравитационном, под знаком которых развивается этот несовершенный мир. Вкратце напомню вам, читатель, что электромагнетизм был исчерпывающе описан английским физиком Джеймсом Максвеллом в 1873 году. Если бы не эта сила, построенная на противоборстве двух полярных начал (заряды одного знака отталкиваются, а разноименные – притягиваются), ни атомы, ни молекулы не смогли бы существовать. Химия и биология так или иначе сводятся к электромагнитному взаимодействию. Телевидение и радио, благодаря которым мы узнаем о цунами в Индонезии, эскападах недобитых талибов в предгорьях Гиндукуша или очередном взлете цен на нефть на мировых рынках, тоже обязаны своим существованием феномену электромагнетизма.

Сильное взаимодействие удерживает протоны и нейтроны внутри атомного ядра, противодействуя силам кулоновского отталкивания, а также склеивает воедино субъядерные частицы – кварки, из которых построена вся материя. Слабое взаимодействие (слабее его только гравитационное) отвечает за превращения элементарных частиц в микромире и некоторые виды радиоактивного распада.

Наконец, гравитационное взаимодействие (оно самое слабое из всех – электромагнитное отталкивание противоположных зарядов превышает стягивающую силу гравитации в 1043 раз) вынуждает тела притягиваться друг к другу и имеет только один знак – массу (что такое «масса» и откуда она берется, не знает никто). Но электромагнитные силы действуют только на заряженные объекты, а гравитация – на все тела без исключения, обладающие массой. А поскольку макроскопические структуры почти всегда электрически нейтральны, сила всемирного тяготения приобретает определяющую роль в космологических масштабах.

Переносчиками электромагнитного взаимодействия являются фотоны (если точнее – виртуальные фотоны), сильного – глюоны (от английского glue — «клей», «клеить»), слабого – так называемые тяжелые векторные бозоны (W+-бозон, W--бозон и Z0-бозон). А вот гравитация стоит в этом ряду особняком, потому что переносчик гравитационного взаимодействия – гипотетический гравитон – до сих пор не обнаружен. Поэтому гравитационное поле описывается в рамках общей теории относительности как искривленный четырехмерный пространственно-временной континуум. Кривизна пространства определяется наличием масс, а сами эти массы, как уже говорилось прежде, перемещаются не по прямой, а по траекториям наименьшей длины – геодезическим линиям. Вспомним простой пример. Если положить на эластичный резиновый лист увесистый металлический шарик, резина просядет, образовав ямку. Если теперь взять шарик поменьше и попробовать его прокатить мимо тяжелого шара, он или скатится в углубление (притянется к тяжелому шару), или опишет около него некоторую кривую, что будет зависеть от скорости легкого шарика и расстояния между ними. Чем больше масса, тем сильнее искривляется пространство. Другими словами, сила гравитации эквивалентна изгибу пространства-времени.

Искривление пространства

Искривление пространства (схематичное изображение)


Остается добавить, что электромагнетизм и гравитация являются дальнодействующими силами, а сильное и слабое взаимодействия эффективны только на малых и сверхмалых расстояниях (10-13—10-15 сантиметров и 10-16—10-17 сантиметров соответственно).

В 1967 году в физике элементарных частиц произошло знаменательное событие. Американец Стивен Вайнберг и англичанин Абдус Салам независимо друг от друга показали, что электромагнитное и слабое взаимодействия имеют единую природу и общее происхождение. Порознь они выступают только при сравнительно низких температурах, а при температуре порядка 1015 градусов становятся неразличимыми, объединяясь в электрослабую силу. Из модели Вайнберга – Салама следовало, что в дополнение к фотону существуют еще три частицы, которые являются переносчиками слабого взаимодействия, – уже знакомые нам векторные бозоны («дубльве плюс», «дубльве минус» и «зет ноль»). При высоких уровнях энергии, соответствующих температуре 1015 градусов Кельвина (а температура, как известно, есть лишь мера количества энергии), W-и Z-частицы начинают вести себя точно так же, как без-массовый фотон. Это напоминает поведение шарика при игре в рулетку.

Стивен Вайнберг

Стивен Вайнберг

Абдус Салам

Абдус Салам


Стивен Хокинг пишет:

При высоких энергиях (то есть при быстром вращении колеса) шарик ведет себя почти одинаково – безостановочно вращается. Но когда колесо замедлится, энергия шарика уменьшается и в конце концов он проваливается в одну из тридцати семи канавок, имеющихся на колесе. Иными словами, при низких энергиях шарик может существовать в тридцати семи состояниях. Если бы мы почему-либо могли наблюдать шарик только при низких энергиях, то считали бы, что существует тридцать семь разных типов шариков!

10 лет спустя теоретическая модель Вайнберга – Салама блестяще подтвердилась экспериментально: были найдены три типа тяжелых векторных бозонов, причем именно с теми параметрами, которые предсказывались. Успех превзошел все ожидания, и сегодня по праву считается, что значимость модели Вайнберга – Салама, получившей название стандартной модели, вполне сравнима с достижениями великого Максвелла, объединившего в свое время электричество и магнетизм.

Но если электромагнетизм и слабые силы суть две стороны одной медали, тогда, быть может, и сильное взаимодействие есть не что иное, как разновидность не коей общей силы? И в самом деле, стандартная модель предсказывает, что при еще более высоких температурах (около 1028 градусов) должно произойти объединение сильного и электрослабого взаимодействий. Фотоны, глюоны и векторные бозоны начинают вести себя идентично и становятся все «на одно лицо», как три ипостаси Творца – Бог Отец, Бог Сын и Бог Дух Святой. Переносчиком этого универсального взаимодействия должна быть таинственная частица Хиггса (или Х-бозон), которая пока еще экспериментально не обнаружена. Однако физики не теряют надежды, что Большой адронный коллайдер – крупнейший в мире ускоритель элементарных частиц, построенный на берегу Женевского озера и запущенный осенью 2007 года, поможет расставить все точки над «i». Между прочим, хиггсовский бозон примечателен еще и тем, что наделяет массой все остальные частицы.

Итак, три взаимодействия из четырех – электромагнитное, сильное и слабое – при определенных условиях сливаются воедино до полной неразличимости. Такие условия существовали в очень ранней Вселенной, когда ее возраст исчислялся микроскопическими долями секунды. Сначала от общего ствола отделилось сильное взаимодействие, а затем электрослабое, которое, в свою очередь, по мере падения температуры распалось на слабое и электромагнитное. Теорию, претендующую на объединение всех трех сил (она, увы, еще не построена), принято называть теорией Великого объединения.

А как быть с гравитацией? Логика подсказывает, что при температурах порядка 1032 градусов она должна неминуемо влиться в тройственный союз, превратив усеченное трио в полноценный квартет. Закавыка, однако, в том, что если три силы в рамках квантовой механики без особого труда объединяются в единую силу (по крайней мере, сугубо теоретически), то гравитация в эту формулу не лезет, упорно не желая поддаваться квантованию. Она продолжает оставаться пятым колесом в телеге, и при попытке совместить квантовый подход с общей теорией относительности изо всех щелей сразу же начинают выползать нелепые бесконечности. Так что эпитет «великая» применительно к теории объединения трех сил грешит известной натяжкой: втиснуть гравитацию в прокрустово ложе гипотетической единой суперсилы никак не удается.

Между тем способ, позволяющий непротиворечиво повязать гравитацию с электромагнетизмом, был предложен еще в начале прошлого века (о двух других взаимодействиях – сильном и слабом – в то время ничего не знали). В 1919 году математик Теодор Калуца написал Эйнштейну письмо, в котором подробно изложил свою идею объединения электромагнитных и гравитационных сил. Как известно, теория Эйнштейна сформулирована в рамках представления о четырехмерном пространстве-времени (три пространственных измерения плюс одно временное). Калуца предложил ввести дополнительное пространственное измерение и построил модель пятимерного пространства-времени (четыре пространственных измерения плюс одно временное), причем сумел показать, что его пятимерная модель идентична четырехмерной модели Эйнштейна плюс электромагнетизм. Другими словами, в теории Калуцы пятое измерение пространства «отвечало» за электромагнетизм: он доказал, что введение дополнительного пространственного измерения эквивалентно введению электромагнетизма.

По Эйнштейну, гравитация, как мы помним, есть проявление метрики четырехмерного пространства-времени, а Калуца нашел неквантовое, геометрическое решение для электромагнетизма. Из его теории следовало, что гравитация в мире пяти измерений едина, а в четырехмерном пространстве-времени Эйнштейна она выступает в форме двух сил – гравитационной и электромагнитной.

Модель Калуцы была безупречна с математической точки зрения, однако содержала существенную неувязку. Ему не удалось объяснить, почему пятое измерение пространства никак себя не проявляет в нашем реальном четырехмерном мире. Мы попытаемся устранить этот пробел, прибегнув к несложной аналогии.

Любой шнур, канат или шланг, вне всякого сомнения, является трехмерным телом – цилиндром. Если мы будем рассматривать такой цилиндр с достаточно большого расстояния, то на первый план выступит в первую очередь его длина, поскольку два других измерения (высота и ширина) сильно уступают ей в размерах. Посмотрите на человеческий волос или нить паутины: это точно такие же цилиндры, как и толстый канат, однако два измерения по причине их малости нами практически не воспринимаются. Паутина или волос выглядят одномерной линией.

Вполне возможно, что пространство нашей Вселенной организовано аналогично: три пространственных измерения растянуты до космологических масштабов, а четвертое настолько мало, что не «ловится» даже с помощью самой чувствительной лабораторной техники, не говоря уже о том, чтобы увидеть его простым глазом. Мы не можем разглядеть четвертое измерение пространства нашей Вселенной ровно по той же причине, по какой не в состоянии увидеть дополнительные измерения тончайшей нити. Но оставаясь принципиально ненаблюдаемым, оно все же проявляет себя в больших масштабах как сила электромагнетизма.

Идеи Калуцы были развиты в 20-х годах прошлого века шведским математиком Оскаром Клейном и получили название теории Калуцы – Клейна. Долгое время они представлялись умозрительными спекуляциями, не имеющими отношения к реальному физическому миру, однако в наши дни стали весьма популярными. Дело в том, что если электромагнетизм может быть объяснен привлечением дополнительного измерения пространства, то нельзя ли точно так же поступить и с другими видами универсальных взаимодействий – сильным и слабым? Быть может, они тоже связаны с некими потаенными измерениями, лежащими за гранью нашего восприятия. Тогда картина мироздания сразу же упрощается, приобретая стройный и законченный вид. Назовем эти компактные скрытые измерения внутренним пространством, а три больших измерения – пространством внешним. Если структура внешнего пространства определяется силами гравитации, то форма внутреннего пространства будет связана с тремя другими взаимодействиями – слабым, сильным и электромагнитным. Понятно, что такое единое описание всех сил природы на языке геометрии представляется весьма привлекательным.

Однако сначала нужно дать ответ на два очень серьезных вопроса. Вопрос первый: как устроено внутреннее пространство, как оно выглядит при ближайшем рассмотрении? Вопрос второй: если Вселенная многомерна, то почему только три пространственных измерения раздулись до космологических масштабов?

Разберемся по порядку. Во-первых, внутреннее пространство должно быть очень маленьким. По всей вероятности, его размер лежит в области планковских длин (около 10-33 см). Во-вторых, несмотря на свою малость, оно не должно иметь границ. В противном случае элементарные частицы, достигнув края, вели бы себя точно так же, как шарики на поверхности стола: они скатились бы вниз. Следовательно, внутреннее пространство должно быть одновременно и компактно, и свернуто, то есть замкнуто само на себя. Наконец, вспомним о том, что кривизна пространства (в данном случае речь идет о внешнем пространстве) теснейшим образом связана с гравитацией. Если бы внутреннее пространство было тоже искривлено, это вызвало бы дополнительные гравитационные эффекты. А поскольку мы их не наблюдаем, остается предположить, что внутреннее пространство вдобавок ко всему должно быть плоским. Но разве можно вообразить фигуру, которая будет в одно и то же время свернутой и плоской?

Чтобы разобраться в этом, обратимся к двумерной аналогии. Пусть примером плоского пространства будет обыкновенный бумажный лист. К сожалению, у него есть четыре края, а наша задача в том и состоит, чтобы от этих краев избавиться. Ларчик открывается просто. Если свернуть листок в трубку, останутся только две незакрытые грани на противоположных концах образовавшегося цилиндра. Соединив их стык в стык, мы получим фигуру, напоминающую бублик или пончик. В геометрии такая фигура называется тором. Топология – раздел математики, изучающий наиболее общие свойства геометрических фигур, – утверждает, что при подобного рода непрерывных преобразованиях, которые мы только что проделали, поверхность листа бумаги остается плоской. И хотя на первый взгляд у тора с бумажным листом общего совсем немного, поверхность бублика – хороший пример конечного плоского пространства.

Помимо всего прочего, модель бублика дает неплохое представление о том, почему дополнительные измерения пространства от нас скрыты, принципиально не наблюдаемы. У тора имеются два диаметра. Первый диаметр – «большой», это диаметр окружности, которая образовалась, когда мы превратили прямую бумажную трубку в замкнутое кольцо. Диаметр номер два много меньше – это, попросту говоря, толщина трубки. Предположим, что большой диаметр имеет астрономические размеры и составляет 1030 см, в то время как малый диаметр не превышает 10-30 см. Тогда гипотетическому существу среднего роста, обитающему на поверхности тора, будет казаться, что его мир одномерен.

Итак, мы ответили на вопрос, каким образом внутреннее пространство может быть одновременно плоским и свернутым. Остается разобраться с привилегированным положением трех больших измерений. Почему только три пространственные координаты нашего мира распухли как на дрожжах, а все прочие остались скукоженными крохотульками? Другими словами, почему Большая Вселенная трехмерна, а не двумерна или, скажем, четырехмерна?

Вспомним сценарий хаотической инфляции Андрея Линде, о котором шла речь в предыдущей главе. Чтобы наглядно продемонстрировать неравномерный характер раздувания в разных доменах (или областях) Вселенной, мы тогда воспользовались аналогией с полиэтиленовой пленкой, разбитой на своего рода шахматные клетки, каждая из которых имеет планковский размер. Эти поля ведут себя сугубо индивидуально. В одних инфляция заканчивается сравнительно быстро, в других продолжается неограниченно долго, а третьи и вовсе моментально схлопываются, едва успев родиться. Полиэтиленовую пленку можно растягивать как угодно и в любых направлениях, поэтому в результате мы получим набор элементарных клеточек различного размера и формы.

Точно так же обстоит дело и с преобладанием трех измерений. Одну шахматную клетку в нашей модели можно растянуть равномерно, и она по окончании инфляции все равно останется плоскостью, только большего размера. А другую можно превратить в тончайшую нить, длина которой будет превышать ее ширину в астрономическое число раз. Муравей, ползущий вдоль такой нити, вполне справедливо сочтет, что его мир имеет только одно пространственное измерение – длину, поскольку ширина обратилась практически в нуль.

В сценарии хаотической инфляции наша реальная физическая Вселенная является малой частью огромного целого – Мега– или Метавселенной (в англоязычной литературе используется термин multiverse по аналогии с universe – «вселенная»). «Там вдали, за рекой», далеко за горизонтом событий, существуют иные миры с другим числом пространственных измерений, развернувшихся до космологических масштабов. Они никак не соотносятся с нашей Вселенной, и даже время в этих других вселенных не обязано коррелировать с нашим. Выражаясь суконным языком строгой науки, мы с вами живем внутри одной причинносвязанной области, раз и навсегда отгороженной от остальных доменов, где правят бал совсем другие физические законы. Нам просто повезло: если бы число «больших» измерений равнялось двум или четырем, интересоваться устройством мироздания, вероятнее всего, стало бы просто некому. По счастливой случайности, мы родились в мире, допускающем образование сложных структур; точнее говоря, только в таком мире мы и могли родиться, ибо вселенные с иными значениями фундаментальных констант сработаны не про нас – вспомните о ювелирной настройке исходных параметров.

Столь пристальный интерес к теории Калуцы – Клейна и проблеме свернутых (скомпактифицированных, как говорят физики) измерений отнюдь не блажь и не игра в бисер, поскольку они имеют самое непосредственное отношение к струнным моделям. При температуре порядка 1032 градусов все четыре взаимодействия – электромагнитное, слабое, сильное и гравитационное – должны слиться в универсальную единую суперсилу. Однако традиционное представление об элементарных частицах как о точечных объектах не позволяет непротиворечиво повязать общую теорию относительности с квантовой механикой. В 1984 году физики Майкл Грин из Лондонского Куин-Мэри колледжа и Джон Шварц из Калифорнийского технологического института показали, что проблема легко решается, если изобразить мир элементарных частиц не в виде крошечных сфер, а в форме протяженных объектов, своего рода нитей, или струн (strings), имеющих упругие свойства. Правда, впервые о струнах заговорили еще в конце 60-х годов прошлого века, но до 1984-го струнные модели оставались откровенной экзотикой, не более чем блестящей игрой ума.

Если растянуть эластичную резиновую ленту, напряженность внутри нее резко возрастет. Но стоит только ее отпустить, как силы упругости моментально вернут ленте исходную форму. Нечто подобное происходит и со струной. По мере падения температуры напряженность струны растет, и когда температура опускается заметно ниже 1032 градусов, она немедленно сжимается в точку. Именно поэтому элементарные частицы, которые мы наблюдаем сегодня, ведут себя как точечные объекты. Однако на самом деле в основе основ мироздания лежат незримые струны, упругий характер которых подразумевает, что они могут вибрировать наподобие гитарной струны. Таким образом, все элементарные частицы – кварки, электроны, протоны – суть не что иное, как вибрации этих крошечных струн, продольный размер которых сопоставим с планковской длиной (10-33 см). Чем короче длина волны, тем выше ее энергия. А поскольку энергия эквивалентна массе (вспомните знаменитую эйнштейновскую формулу Е = mc2), то можно без труда сопоставить длину волны и ее энергию с массой. Поэтому колебания струны с различной частотой могут интерпретироваться как различные частицы. Подобный нестандартный подход замечателен тем, что дает возможность рассматривать все элементарные частицы в виде одного и того же фундаментального объекта – струны. Другая привлекательная особенность струнных теорий состоит в том, что взаимодействие между частицами изящно и непринужденно объясняется разваливанием струны на части или соединением отдельных ее фрагментов.

Итак, все известные нам кирпичики мироздания можно уподобить звукам, возникающим при колебаниях гитарной струны, и тогда Вселенная обернется грандиозной симфонией, величаво выплывающей из незримого Ничто. Что и говорить, впечатляющая и захватывающая дух картина, приводящая на память первый опус Фридриха Ницше – «Рождение трагедии из духа музыки». В скобках заметим, что струнные теории чаще именуются теорией суперструн, поскольку они обладают так называемой суперсимметрией, объединяющей частицы с целым спином (например, фотоны) и полуцелым спином (например, электроны) в единую схему, но мы в эти физические дебри не полезем.

Беда в том, что упомянутые струны упорно не желают звучать в пространстве трех измерений, а потому теория суперструн справедлива как минимум в десятимерном мире (одно временное и девять пространственных измерений, причем шесть из них свернуты и скрыты от наблюдателя по причине микроскопических размеров). Как известно, на гитарной струне умещаются колебания только с некоторой вполне определенной длиной волны, потому что ее концы жестко закреплены. Суперструны тоже колеблются не абы как, поскольку ограничены внутренним пространством – шестью скрытыми измерениями, замкнутыми на себя. Поэтому длины волн, разрешенные на струне, определяются структурой и размерами внутреннего пространства. Таким образом, структура внутреннего пространства играет ведущую роль в особенностях тех сил, которые мы наблюдаем.

Обстоятельный разбор струнных теорий (а их на сегодняшний день предложено достаточно много) не входит в наши задачи. Отметим только, что, скажем, так называемая М-теория, являющаяся прямой наследницей различных теорий суперструн и весьма сегодня популярная, накладывает дополнительные ограничения на число пространственных измерений. Эта модель, построенная в 1995 году профессором Принстонского университета Эдвардом Уиттеном, лишена явных противоречий, по всей видимости, только в пространстве 11 или 26 измерений.

Впрочем, у теории суперструн есть не только горячие поклонники, но и не менее яростные противники, справедливо полагающие, что идею о многомерности нашей Вселенной следует числить по ведомству серьезных трудностей этой модели. Другим ее существенным недостатком (несмотря на массу достоинств, о которых не устают напоминать апологеты струны) является невозможность экспериментальной проверки (по крайней мере, в обозримом будущем). Да и вообще, откровенно говоря, теория суперструн пока еще весьма и весьма далека от завершения. Правда, многие физики не теряют надежды, что струнный подход рано или поздно позволит построить универсальную теорию, которую принято называть Теорией всего (по-английски – Theory of Everything, сокращенно TOE).

Категория: УДИВИТЕЛЬНАЯ КОСМОЛОГИЯ | Добавил: tineydgers (24.01.2013)
Просмотров: 1862 | Теги: энциклопедия о космосе, школьникам о космосе, дидактический материал к урокам аст, занимательная астрономия, астрономия в школе, космология | Рейтинг: 5.0/1
» Поиск
» АСТРОНОМИЯ

УДИВИТЕЛЬНАЯ
  АСТРОНОМИЯ


ЗАГАДОЧНАЯ СОЛНЕЧНАЯ
  СИСТЕМА


АСТРОНОМИЯ В ВОПРОСАХ И
  ОТВЕТАХ


УДИВИТЕЛЬНАЯ
  КОСМОЛОГИЯ


КРОССВОРДЫ ПО АСТРОНОМИИ

» ИНФОРМАТИКА

ЗАНИМАТЕЛЬНАЯ
  ИНФОРМАТИКА


К УРОКАМ
  ИНФОРМАТИКИ


СПРАВОЧНИК ПО
  ИНФОРМАТИКЕ


ТЕСТЫ ПО ИНФОРМАТИКЕ

КРОССВОРДЫ ПО
  ИНФОРМАТИКЕ

» ОБЩЕСТВОЗНАНИЕ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ В 7 КЛАССЕ


ТЕСТЫ. 9 КЛАСС

САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ. 9 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ В
  ФОРМАТЕ ЕГЭ


ШКОЛЬНЫЕ ОЛИМПИАДЫ
   ПО ОБЩЕСТВОВЕДЕНИЮ

» ХИМИЯ
» ОБЖ

ЧТО ДЕЛАТЬ ЕСЛИ ...

РЕКОРДЫ СТИХИИ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ ОБЖ В 11 КЛАССЕ


ПРОВЕРОЧНЫЕ РАБОТЫ ПО
  ОБЖ


ТЕСТЫ ПО ОБЖ. 10-11 КЛАССЫ

КРОССВОРДЫ ПО ОБЖ

» МХК И ИЗО

СОВРЕМЕННАЯ
  ЭНЦИКЛОПЕДИЯ ИСКУССТВА


ВЕЛИКИЕ ТЕАТРЫ МИРА

САМЫЕ ИЗВЕСТНЫЕ
  ПАМЯТНИКИ


МУЗЕЕВ МИРА

ВЕЛИКИЕ СОКРОВИЩА МИРА

СОКРОВИЩА РОССИИ

ИЗО-СТУДИЯ

КРОССВОРДЫ ПО МХК

» ЕСТЕСТВОЗНАНИЕ

ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ
  УРОВЕНЬ. 10 КЛАСС


УДИВИТЕЛЬНАЯ ИСТОРИЯ
  ЗЕМЛИ


ИСТОРИЯ ОСВОЕНИЯ ЗЕМЛИ

ВЕЛИЧАЙШИЕ
  АРХЕОЛОГИЧЕСКИЕ ОТКРЫТИЯ


УДИВИТЕЛЬНЫЕ ОТКРЫТИЯ
  УЧЕНЫХ


РАЗВИВАЮШИЕ ЭКСПЕРИМЕНТЫ
  И ОПЫТЫ ПО
  ЕСТЕСТВОЗНАНИЮ


САМЫЕ ИЗВЕСТНЫЕ
  НОБЕЛЕВСКИЕ ЛАУРЕАТЫ

» ГОТОВЫЕ СОЧИНЕНИЯ

РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА
  (на русск.яз.)


УКРАИНСКИЙ ЯЗЫК

УКРАИНСКАЯ ЛИТЕРАТУРА

ПРИКОЛЫ ИЗ СОЧИНЕНИЙ

» ПАТРИОТИЧЕСКОЕ ВОСПИТАНИЕ
» УЧИТЕЛЬСКАЯ
» МОСКВОВЕДЕНИЕ ДЛЯ ШКОЛЬНИКОВ

ЗНАКОМИМСЯ С МОСКВОЙ

СТАРАЯ ЛЕГЕНДА О
  МОСКОВИИ


ПРОГУЛКИ ПО
  ДОПЕТРОВСКОЙ МОСКВЕ


МОСКОВСКИЙ КРЕМЛЬ

БУЛЬВАРНОЕ КОЛЬЦО

» ЭНЦИКЛОПЕДИЯ ОБО ВСЕМ НА СВЕТЕ
» ПОЗНАВАТЕЛЬНО И ЗАНИМАТЕЛЬНО

ДИКОВИНКИ СО ВСЕГО МИРА

УДИВИТЕЛЬНАЯ ЛОГИКА

ЗАНИМАТЕЛЬНАЯ
  ПСИХОЛОГИЯ


МИНЕРАЛЫ И ДРАГОЦЕННЫЕ
  КАМНИ


УДИВИТЕЛЬНАЯ АРХЕОЛОГИЯ

ДИВНАЯ ПАЛЕОНТОЛОГИЯ

» БЕСЕДА ПО ДУШАМ С ТИНЕЙДЖЕРАМИ

МЕЖДУ НАМИ ДЕВОЧКАМИ

МЕЖДУ НАМИ МАЛЬЧИКАМИ

НАС ЖДЕТ ЭКЗАМЕН

» Статистика

Онлайн всего: 6
Гостей: 6
Пользователей: 0
» Вход на сайт

» Друзья сайта
Copyright MyCorp © 2024 Яндекс.Метрика Рейтинг@Mail.ru Каталог сайтов и статей iLinks.RU Каталог сайтов Bi0