В зависимости от частоты колебаний электромагнитные
волны оказывают различное действие на организм человека и используются
для различных технических целей. Диапазон этих частот называют спектром электромагнитного излучения, он огромен – от нескольких десятков тысяч до 1020 Гц (табл. 5).
Соответственно, длина электромагнитной волны может
составлять от десятков километров до тысячных долей нанометра. Человек
без помощи приборов может воспринимать лишь очень небольшую часть
электромагнитного спектра, которую называют видимой частью
этого спектра или его световым диапазоном (рис. 83).
Светочувствительные клетки глаза реагируют на попадающее в глаз
излучение, находящееся в световом диапазоне, и превращают его в ощущение
света.
Таблица 5
Длина волны и частота электромагнитного излучения в различных диапазонах Рис. 83. Спектр видимого излучения
Причём в зависимости от длины волны мы можем
воспринимать различные цвета. Самые короткие волны вызывают ощущения
фиолетового света, затем, по мере увеличения длины волны, возникают
ощущения голубого, синего, зелёного, жёлтого, оранжевого и красного
цвета. В точности с фразой для запоминания видимого спектра: «Каждый
охотник желает знать, где сидит фазан».
В других областях спектра электромагнитное излучение
невидимо для человеческого глаза. Излучение, длина волны которого
немного больше, чем в видимой области, называют инфракрасным.
Мы тоже можем воспринимать его, но уже не как свет, а как тепло.
Существуют приборы, способные реагировать на инфракрасное излучение; на
фотографиях, сделанных с их помощью, горячие предметы будут выглядеть
тёмными, а холодные – светлыми. Сфотографировав комнату зимой, мы увидим
чёрные радиаторы отопления и белые окна. Мы также различим на фоне стен
фигуры людей и животных, так как температура их тел выше, чем
температура окружающих предметов (рис. 84). Некоторые змеи способны
видеть в инфракрасной области и, благодаря этому, находить в темноте
мышей, на которых они охотятся.
Волны с ещё большей длиной волны называют радиоволнами.
Так как их диапазон сам по себе огромен, он делится на несколько областей. Наиболее широко в настоящее время используются ультракороткие волны, которые, в свою очередь, бывают метровыми, дециметровыми, сантиметровыми и миллиметровыми. Рис. 84.
На регистрации инфракрасного излучения основана работа тепловизоров –
приборов для наблюдения за распределением температуры исследуемой
поверхности. Инфракрасное излучение в приборе преобразуется в
электрический сигнал. Распределение температуры отображается на дисплее
тепловизора как цветовое поле, где определённой температуре
соответствует определённый цвет
Они используются для радио– и телевизионных передач,
в мобильных телефонах, в медицинских и астрономических исследованиях и
во многих других областях, о чём будет рассказано в следующих главах
учебника. В радиотехнике для различных видов связи используют также короткие, средние, длинные и сверхдлинные радиоволны.
Последние обладают очень низкой частотой и, соответственно, большой
длиной волны. В природе они возникают во время разрядов молнии.
Сверхдлинные волны слабо затухают по мере их распространения и являются
очень устойчивыми по амплитуде. Благодаря этому, их широко используют в
глобальных радиосистемах для связи на больших расстояниях. Кроме того,
эти волны глубоко проникают в воду и в толщу Земли, что позволяет
использовать их для связи с подводными и подземными объектами.
Если теперь от видимого света сдвинуться в область более коротких волн, то ближайшую часть спектра займёт ультрафиолетовое излучение. Человеческий глаз это излучение не воспринимает, но некоторые животные, например пчёлы, видят его достаточно хорошо.
Следующую, ещё более коротковолновую, область электромагнитного спектра называют рентгеновским излучением. Его открыл в 1895 г. немецкий физик Вильгельм Конрад Рентген
(1845–1923), обнаружив существование невидимого излучения, которое он
назвал Х-лучами. Лучи Рентгена обладают способностью глубоко проникать в
предметы и вещества. Благодаря этому их используют для исследования
внутреннего строения всевозможных объектов: человеческого тела,
кристаллов, древних произведений искусства и многого другого (рис. 85).
За своё открытие Рентген был награждён первой в истории Нобелевской
премией по физике.
Наконец, самое коротковолновое и, следовательно, самое высокочастотное излучение называют гамма-излучением. Рис. 85. Рентгеновские снимки
Оно возникает при радиоактивном распаде атомных ядер и превращениях элементарных частиц.
Необходимо обратить внимание на одну очень важную
закономерность. Чем больше частота электромагнитного излучения (или чем
меньше длина его волны), тем большей энергией оно обладает. Если
радиоволны и видимый свет при умеренной интенсивности не оказывают
вредного влияния на человека, то уже ультрафиолетовые лучи могут вызвать
ожоги и при достаточно длительном воздействии привести к возникновению
опухолей. Рентгеновские лучи несут в себе достаточно серьёзную
опасность. Конечно, медицинское рентгеновское обследование, проводимое
один-два раза в год, такой опасности не представляет, но у
врача-рентгенолога, включающего в своём кабинете аппарат много раз в
день, оно может вызвать серьёзные заболевания. Поэтому врач, перед тем
как включить рентгеновскую установку, удаляется в специальное укрытие,
куда излучение не проникает. Наиболее разрушительное действие оказывает
гамма-излучение, которое может вызвать неизлечимую лучевую болезнь и
даже смерть в течение нескольких минут, так называемую «смерть под
лучом». Подробнее о природе света и других видов электромагнитного
излучения вы узнаете из следующей главы.
Проверьте свои знания1. Как
называются виды электромагнитного излучения, частота которых немного
выше и немного ниже частоты излучения видимой части электромагнитного
спектра?
2. Какие электромагнитные волны используют для установления связи на больших расстояниях?
3. Для каких целей используют рентгеновское излучение?
4. Как зависит энергия излучения от его частоты?
Задания1. Подберите эпиграф к данному параграфу.
2. Расположите виды электромагнитного излучения в
порядке увеличения длины их волны: а – рентгеновское, б – жёлтое, в –
гамма, г – ультрафиолетовое, д – зелёное, е – радиоволны, ж –
инфракрасное.
3. Рассмотрите рисунок 84. Предположите, какой
цвет соответствует максимальной, а какой – минимальной температуре
поверхности человека.
4. С 2008–2009 гг. тепловизоры, регистрирующие
инфракрасное излучение, начали активно использовать в аэропортах и на
железнодорожных вокзалах для выделения из толпы определённых людей.
Обсудите в классе и предположите, кого именно и с какой целью ищут среди толпы с помощью тепловизора.
5. Вспомните, что означают приставки системы СИ (н, м, к, М, Г, Т) в единицах измерения, указанных в таблице 5.
|