Т  И  Н  Е  Й  Д  Ж  Е  Р  Ы

Для тех, кто учится и учит


Главная Мой профиль Выход                      Вы вошли как Гость | Группа "Гости" | RSS
Воскресенье, 19.05.2024, 16:49:18
» МЕНЮ САЙТА
» ОТКРЫТЫЙ УРОК

 РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

НАЧАЛЬНАЯ ШКОЛА

УКРАИНСКИЙ ЯЗЫК

ИНОСТРАННЫЕ ЯЗЫКИ

УКРАИНСКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА

МАТЕМАТИКА

ИСТОРИЯ

ОБЩЕСТВОЗНАНИЕ

БИОЛОГИЯ

ГЕОГРАФИЯ

ФИЗИКА

АСТРОНОМИЯ

ИНФОРМАТИКА

ХИМИЯ

ОБЖ

ЭКОНОМИКА

ЭКОЛОГИЯ

ФИЗКУЛЬТУРА

ТЕХНОЛОГИЯ

МХК

МУЗЫКА

ИЗО

ПСИХОЛОГИЯ

КЛАССНОЕ РУКОВОДСТВО

ВНЕКЛАССНАЯ РАБОТА

АДМИНИСТРАЦИЯ ШКОЛЫ

» РУССКИЙ ЯЗЫК
МОНИТОРИНГ КАЧЕСТВА ЗНАНИЙ. 5 КЛАСС

ОРФОЭПИЯ

ЧАСТИ РЕЧИ


ТЕСТЫ В ФОРМАТЕ ОГЭ.
   5 КЛАСС


ПУНКТУАЦИЯ В ЗАДАНИЯХ И
  ОТВЕТАХ


САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ.10 КЛАСС


КРОССВОРДЫ ПО РУССКОМУ
  ЯЗЫКУ
» ЛИТЕРАТУРА
ВЕЛИЧАЙШИЕ КНИГИ ВСЕХ
  ВРЕМЕН И НАРОДОВ


КОРИФЕИ ЛИТЕРАТУРЫ

ЛИТЕРАТУРА В СХЕМАХ И
  ТАБЛИЦАХ


ТЕСТЫ ПО ЛИТЕРАТУРЕ

САМЫЕ ИЗВЕСТНЫЕ МИФЫ И
  ЛЕГЕНДЫ


КРОССВОРДЫ ПО ЛИТЕРАТУРЕ
» ИСТОРИЯ
» АНГЛИЙСКИЙ ЯЗЫК
ИНОСТРАННЫЕ ЯЗЫКИ.
  РАЗГОВОРНЫЕ ТЕМЫ


САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
  ПО АНГЛИЙСКОМУ ЯЗЫКУ


ТЕСТЫ ПО ГРАММАТИКЕ
  АНГЛИЙСКОГО ЯЗЫКА


ТЕМАТИЧЕСКИЙ КОНТРОЛЬ.
  9 КЛАСС


ПОДГОТОВКА К ЕГЭ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ


КРОССВОРДЫ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ
» МАТЕМАТИКА - ЦАРИЦА НАУК
» БИОЛОГИЯ
» ГЕОГРАФИЯ
» ФИЗИКА
» Категории раздела
ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ УРОВЕНЬ. 10 КЛАСС [74]
ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ УРОВЕНЬ. 11 КЛАСС [77]
РАЗВИВАЮШИЕ ЭКСПЕРИМЕНТЫ И ОПЫТЫ ПО ЕСТЕСТВОЗНАНИЮ [42]

Наночастицы и перспективы нанотехнологий

– Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал.

Н. С. Лесков. Левша

Нанотехнология – это относительно новая область теоретических и прикладных междисциплинарных исследований, объектом которой являются частицы, имеющие размеры от 1 до 100 нм. Это больше, чем размер атомов или неорганических молекул, но значительно меньше, чем размеры объектов, которыми принято оперировать в обычной технике (рис. 254). Такие частицы обладают целым рядом свойств, отличных как от свойств атомов и небольших молекул, так и от свойств крупных частиц.

Для практических целей важно, чтобы наночастицы располагались в строго определённом порядке и образовали структуру с требуемыми свойствами. Мы уже рассматривали естественные наноструктуры, когда говорили об устройстве живой клетки. Клетка состоит из огромного числа атомов и молекул, и при этом недостаточно, чтобы просто соблюдалось общее количество атомов и молекул каждого вида и пропорциональное соотношение между ними. Для того чтобы клетка могла жить, требуется, чтобы все атомы в молекулах были расположены с строго определённом порядке. Достаточно поменять местами несколько нуклеотидов в молекуле ДНК, и клетка окажется нежизнеспособной. А поскольку размеры крупных органических молекул в клетке как раз соответствуют размерам наночастиц, то процессы самоудвоения ДНК, синтеза белка и деления клетки, по сути, являются нанотехнологиями, осуществляемыми самой природой.

Другим рассмотренным нами примером нанотехнологии, но уже осуществляемой искусственно, является создание электронных интегральных микросхем, где расположенные в строгом порядке элементы имеют размеры порядка нескольких десятков нанометров, т. е. как раз представляют собой наночастицы.

Рис. 254. Размеры некоторых биологических объектов и молекул (логарифмический масштаб)

В настоящее время нанотехнология считается одним из самых перспективных направлений научно-технического развития человечества.

Рис. 255. Ричард Фейнман (1918–1988) – американский физик, лауреат Нобелевской премии по физике 1965 г.

История появления нанотехнологии

Впервые термин «нанотехнология» употребил в 1974 г. японский физик Норио Тани гути. Однако о возможности применения нанотехнологий заговорили гораздо раньше. В 1959 г. американский физик Ричард Фейнман (рис. 255) опубликовал работу, в которой оценил перспективы уменьшения размеров производимых вещей. Он научно обосновал, что с точки зрения фундаментальных законов природы нет препятствий для того, чтобы собирать предметы из отдельных атомов и использовать их, например, для записи информации. Лекция Фейнмана «Там, внизу, много места» («There’s Plenty of Room at the Bottom»), прочитанная им в Калифорнийском технологическом институте, стала легендарной. Вот отрывок из этого выступления: «По моим оценкам, в 24 миллионах книг размером с Британскую энциклопедию содержится 1015 бит информации. Думаю, что для хранения бита информации достаточно 100 атомов. Выходит, что вся собранная человечеством информация может храниться в кубе с гранями всего по полмиллиметра, т. е. в крохотной частичке пыли, едва различимой человеческим глазом. Так что внизу много места!»

Тогда многие восприняли его слова как фантастику. Ведь в то время ещё не существовало ни самих технологий, ни даже их проектов, позволяющих оперировать с отдельными атомами.

Главная проблема нанотехнологии заключается в том, чтобы найти способ заставить молекулы выстраиваться в определённом порядке, т. е. самоорганизовываться требуемым способом. Для решения этой проблемы был даже создан особый раздел химии – супрамолекулярная химия. Часто в нанотехнологии используют биологические крупные молекулы, по самой своей природе способные к самоорганизации. Известен, например, приём, используемый для соединения двух молекул в требуемый комплекс. Назовём эти молекулы А и В. Берётся молекула ДНК и разделяется на две взаимно комплементарные цепочки. К концу одной цепочки присоединяют молекулу А, а к другой – В. Затем оба компонента смешивают, комплементарные цепочки ДНК соединяются водородными связями, и в результате молекула А оказывается точно возле молекулы В. Между ними происходит взаимодействие, и образуется комплекс А. После этого молекулу ДНК можно удалить.

Уникальные свойства наноматериалов

Благодаря своим уникальным свойствам наноматериалы стремительно завоёвывают мир. Эти свойства в первую очередь обусловлены их нанометровыми размерами. В отличие от своих макро– и микроскопических собратьев, наночастицы свободны от механических дефектов, что позволяет использовать их, например, для хранения информации и нужд микроэлектроники. За счёт чрезвычайно малых размеров возможно производить суперминиатюрные устройства.

На поверхности наноструктур находится относительно большое количество атомов, т. е. у них очень большая относительная площадь поверхности. Это свойство важно, например, для каталитических процессов, в которых наноматериалы способны ускорять реакции в тысячи и даже миллионы раз.

Помимо этого наноматериалы проявляют необычные свойства, которые не могут быть описаны привычными для нас законами классической механики. В них начинают проявляться так называемые квантово-механические эффекты, что делает их весьма перспективными для использования в электронных и оптических устройствах, а также в биологических и медицинских исследованиях.

Достижения нанотехнологий

Многие нанотехнологии уже нашли практическое применение, а другие ещё находятся на стадии разработки. Одной из таких перспективных разработок является создание углеродных нанотрубок – цилиндрических структур из тонкого слоя графита особой структуры диаметром до нескольких десятков нанометров и длиной до нескольких сантиметров (рис. 256). Нанотрубки могут найти очень широкое применение – от создания новых типов транзисторов, дисплеев и фотодиодов до создания соединений между живыми нейронами и электронными устройствами в новейших нейрокомпьютерных разработках.

В 2010 г. Нобелевская премия по физике была присуждена двум русским учёным, работающим в Манчестерском университете, – Андрею Гейму и Константину Новосёлову. Премию они получили за то, что им удалось создать графен – плёнку, состоящую из обычного графита, который вставляют в карандаши, только эта плёнка имела толщину всего в один атом. Эта плёнка обладает настолько поразительными свойствами, что ещё недавно в возможность её существования никто не верил. Графен очень хорошо проводит электрический ток даже при комнатной температуре, что позволит заменить им кремний в полупроводниках и создавать на его основе сенсорные экраны, солнечные батареи, сотовые телефоны и сверхбыстрые компьютерные чипы.

Рис. 256. Нанотрубка

Рис. 257. Наноробот в кровеносном сосуде

Большой интерес в рамках нанотехнологий представляет создание нанороботов, разработка которых проводится в настоящее время (рис. 257). Это будут машины, сопоставимые по размерам с молекулами, которые будут способны двигаться, обрабатывать и передавать информацию, реализовывать заложенные в них программы, а возможно, и создавать себе подобные, т. е. самовоспроизводиться. Согласно другой точке зрения, нанороботы могут иметь и большие размеры – главное, чтобы они были способны манипулировать с объектами на наноуровне. Примитивные модели нанороботов существуют уже сейчас. Показано, что с их помощью можно управлять некоторыми химическими реакциями. Некоторые конструкторы нанороботов пытаются строить их на биологической основе, для чего используют фрагменты ДНК, называя свои создания ДНК-компьютерами.

Предполагают, что нанороботы могут найти применение в самых различных областях человеческой деятельности, особенно в медицине, где с их помощью можно будет диагностировать на ранней стадии многие заболевания (рак, диабет и др.), проводить хирургические микрооперации и осуществлять доставку лекарственных средств в нужные участки организма. Возможно, нанороботы смогут собирать различные системы из отдельных молекул.

Междисциплинарный характер нанотехнологии обеспечил ей распространение практически во всех отраслях науки и техники. В настоящее время технологические процессы производства интегральных микросхем уже осуществляются на нанометровом уровне в промышленных масштабах, и для дальнейшей миниатюризации преградой являются не технологические, а квантовые эффекты, проявляющие себя на микроуровне. Выпускаются фильтры, содержащие пористые наноматериалы. Они позволяют быстро и эффективно очищать воду не только от ионов, органических соединений, частиц грязи, но и от бактерий и даже вирусов. Появляются и первые медицинские препараты, позволяющие ускорять заживление ран и ожогов, а также эффективно убивать микробов. Наночастицы оксида титана и оксида цинка повсеместно стали использоваться в солнцезащитных кремах, поскольку именно они пропускают свет в видимом диапазоне и отсекают опасный для человека ультрафиолет.

В ближайшем будущем благодаря развитию нанотехнологии и биологии можно ожидать появления эффективных и безопасных лекарств, чувствительных датчиков, следящих за здоровьем человека, и, возможно, даже биокомпьютеров и биороботов.

Проверьте свои знания

1. Когда зародилась идея работы на наноуровне?

2. Каковы были предпосылки возникновения нанотехнологии?

3. Расскажите, чем занимается нанотехнология. Что такое нанометр?

4. Приведите примеры веществ и материалов, обладающих нанометровыми размерами.

5. Какими необычными свойствами обладают наноматериалы?

Задания

1. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию по одной из предложенных тем: «Бионаномашины и перспективы создания биокомпьютеров», «Наномедицина и её будущее», «Наноматериалы», «Нанотехнологии в медицине: новые подходы к доставке лекарств в организм», «Нанотехнология и экология: возможные опасности использования наноматериалов». Подготовьте и проведите конференцию по теме «Нанотехнологии и будущее человечества».

2. Подготовьтесь к дискуссии на тему «Военные приложения нанотехнологических разработок: за и против».

Категория: ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ УРОВЕНЬ. 11 КЛАСС | Добавил: tineydgers (27.01.2016)
Просмотров: 937 | Теги: дидактический материал по естествоз, ФГОС естествознание, естествознание 11 кл, урок естествознания в школе, онлайн-учебник естествознания | Рейтинг: 0.0/0
» Поиск
» АСТРОНОМИЯ

УДИВИТЕЛЬНАЯ
  АСТРОНОМИЯ


ЗАГАДОЧНАЯ СОЛНЕЧНАЯ
  СИСТЕМА


АСТРОНОМИЯ В ВОПРОСАХ И
  ОТВЕТАХ


УДИВИТЕЛЬНАЯ
  КОСМОЛОГИЯ


КРОССВОРДЫ ПО АСТРОНОМИИ

» ИНФОРМАТИКА

ЗАНИМАТЕЛЬНАЯ
  ИНФОРМАТИКА


К УРОКАМ
  ИНФОРМАТИКИ


СПРАВОЧНИК ПО
  ИНФОРМАТИКЕ


ТЕСТЫ ПО ИНФОРМАТИКЕ

КРОССВОРДЫ ПО
  ИНФОРМАТИКЕ

» ОБЩЕСТВОЗНАНИЕ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ В 7 КЛАССЕ


ТЕСТЫ. 9 КЛАСС

САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ. 9 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ В
  ФОРМАТЕ ЕГЭ


ШКОЛЬНЫЕ ОЛИМПИАДЫ
   ПО ОБЩЕСТВОВЕДЕНИЮ

» ХИМИЯ
» ОБЖ

ЧТО ДЕЛАТЬ ЕСЛИ ...

РЕКОРДЫ СТИХИИ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ ОБЖ В 11 КЛАССЕ


ПРОВЕРОЧНЫЕ РАБОТЫ ПО
  ОБЖ


ТЕСТЫ ПО ОБЖ. 10-11 КЛАССЫ

КРОССВОРДЫ ПО ОБЖ

» МХК И ИЗО

СОВРЕМЕННАЯ
  ЭНЦИКЛОПЕДИЯ ИСКУССТВА


ВЕЛИКИЕ ТЕАТРЫ МИРА

САМЫЕ ИЗВЕСТНЫЕ
  ПАМЯТНИКИ


МУЗЕЕВ МИРА

ВЕЛИКИЕ СОКРОВИЩА МИРА

СОКРОВИЩА РОССИИ

ИЗО-СТУДИЯ

КРОССВОРДЫ ПО МХК

» ЕСТЕСТВОЗНАНИЕ

ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ
  УРОВЕНЬ. 10 КЛАСС


УДИВИТЕЛЬНАЯ ИСТОРИЯ
  ЗЕМЛИ


ИСТОРИЯ ОСВОЕНИЯ ЗЕМЛИ

ВЕЛИЧАЙШИЕ
  АРХЕОЛОГИЧЕСКИЕ ОТКРЫТИЯ


УДИВИТЕЛЬНЫЕ ОТКРЫТИЯ
  УЧЕНЫХ


РАЗВИВАЮШИЕ ЭКСПЕРИМЕНТЫ
  И ОПЫТЫ ПО
  ЕСТЕСТВОЗНАНИЮ


САМЫЕ ИЗВЕСТНЫЕ
  НОБЕЛЕВСКИЕ ЛАУРЕАТЫ

» ГОТОВЫЕ СОЧИНЕНИЯ

РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА
  (на русск.яз.)


УКРАИНСКИЙ ЯЗЫК

УКРАИНСКАЯ ЛИТЕРАТУРА

ПРИКОЛЫ ИЗ СОЧИНЕНИЙ

» ПАТРИОТИЧЕСКОЕ ВОСПИТАНИЕ
» УЧИТЕЛЬСКАЯ
» МОСКВОВЕДЕНИЕ ДЛЯ ШКОЛЬНИКОВ

ЗНАКОМИМСЯ С МОСКВОЙ

СТАРАЯ ЛЕГЕНДА О
  МОСКОВИИ


ПРОГУЛКИ ПО
  ДОПЕТРОВСКОЙ МОСКВЕ


МОСКОВСКИЙ КРЕМЛЬ

БУЛЬВАРНОЕ КОЛЬЦО

» ЭНЦИКЛОПЕДИЯ ОБО ВСЕМ НА СВЕТЕ
» ПОЗНАВАТЕЛЬНО И ЗАНИМАТЕЛЬНО

ДИКОВИНКИ СО ВСЕГО МИРА

УДИВИТЕЛЬНАЯ ЛОГИКА

ЗАНИМАТЕЛЬНАЯ
  ПСИХОЛОГИЯ


МИНЕРАЛЫ И ДРАГОЦЕННЫЕ
  КАМНИ


УДИВИТЕЛЬНАЯ АРХЕОЛОГИЯ

ДИВНАЯ ПАЛЕОНТОЛОГИЯ

» БЕСЕДА ПО ДУШАМ С ТИНЕЙДЖЕРАМИ

МЕЖДУ НАМИ ДЕВОЧКАМИ

МЕЖДУ НАМИ МАЛЬЧИКАМИ

НАС ЖДЕТ ЭКЗАМЕН

» Статистика

Онлайн всего: 9
Гостей: 9
Пользователей: 0
» Вход на сайт

» Друзья сайта
Copyright MyCorp © 2024 Яндекс.Метрика Рейтинг@Mail.ru Каталог сайтов и статей iLinks.RU Каталог сайтов Bi0