Т  И  Н  Е  Й  Д  Ж  Е  Р  Ы

Для тех, кто учится и учит


Главная Мой профиль Выход                      Вы вошли как Гость | Группа "Гости" | RSS
Четверг, 21.11.2024, 13:56:43
» МЕНЮ САЙТА
» ОТКРЫТЫЙ УРОК

 РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

НАЧАЛЬНАЯ ШКОЛА

УКРАИНСКИЙ ЯЗЫК

ИНОСТРАННЫЕ ЯЗЫКИ

УКРАИНСКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА

МАТЕМАТИКА

ИСТОРИЯ

ОБЩЕСТВОЗНАНИЕ

БИОЛОГИЯ

ГЕОГРАФИЯ

ФИЗИКА

АСТРОНОМИЯ

ИНФОРМАТИКА

ХИМИЯ

ОБЖ

ЭКОНОМИКА

ЭКОЛОГИЯ

ФИЗКУЛЬТУРА

ТЕХНОЛОГИЯ

МХК

МУЗЫКА

ИЗО

ПСИХОЛОГИЯ

КЛАССНОЕ РУКОВОДСТВО

ВНЕКЛАССНАЯ РАБОТА

АДМИНИСТРАЦИЯ ШКОЛЫ

» РУССКИЙ ЯЗЫК
МОНИТОРИНГ КАЧЕСТВА ЗНАНИЙ. 5 КЛАСС

ОРФОЭПИЯ

ЧАСТИ РЕЧИ


ТЕСТЫ В ФОРМАТЕ ОГЭ.
   5 КЛАСС


ПУНКТУАЦИЯ В ЗАДАНИЯХ И
  ОТВЕТАХ


САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ.10 КЛАСС


КРОССВОРДЫ ПО РУССКОМУ
  ЯЗЫКУ
» ЛИТЕРАТУРА
ВЕЛИЧАЙШИЕ КНИГИ ВСЕХ
  ВРЕМЕН И НАРОДОВ


КОРИФЕИ ЛИТЕРАТУРЫ

ЛИТЕРАТУРА В СХЕМАХ И
  ТАБЛИЦАХ


ТЕСТЫ ПО ЛИТЕРАТУРЕ

САМЫЕ ИЗВЕСТНЫЕ МИФЫ И
  ЛЕГЕНДЫ


КРОССВОРДЫ ПО ЛИТЕРАТУРЕ
» ИСТОРИЯ
» АНГЛИЙСКИЙ ЯЗЫК
ИНОСТРАННЫЕ ЯЗЫКИ.
  РАЗГОВОРНЫЕ ТЕМЫ


САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
  ПО АНГЛИЙСКОМУ ЯЗЫКУ


ТЕСТЫ ПО ГРАММАТИКЕ
  АНГЛИЙСКОГО ЯЗЫКА


ТЕМАТИЧЕСКИЙ КОНТРОЛЬ.
  9 КЛАСС


ПОДГОТОВКА К ЕГЭ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ


КРОССВОРДЫ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ
» МАТЕМАТИКА - ЦАРИЦА НАУК
» БИОЛОГИЯ
» ГЕОГРАФИЯ
» ФИЗИКА
» Категории раздела
УДИВИТЕЛЬНАЯ ФИЗИКА [59]
УДИВИТЕЛЬНАЯ МЕХАНИКА [44]
ОТКРЫВАЕМ ЗАКОНЫ ФИЗИКИ [40]
ШТУРМ АБСОЛЮТНОГО НУЛЯ [14]
СЛОЖНЫЕ ЗАКОНЫ ФИЗИКИ В ПРОСТЫХ ОПЫТАХ [100]
ИСТОРИЯ ФИЗИКИ [14]

Рубиновая молния
Какое огромное практическое применение находят себе «невидимые» кванты и какие грандиозные перспективы они открывают перед человечеством, можно показать на примере одного из самых больших достижений современной науки и техники — квантовых генераторов и усилителей.

Вдохновенный исследователь света Сергей Иванович Вавилов не скрывал своего восхищения той областью оптики, которая имеет дело с предельно малыми световыми потоками и изучает процессы, протекающие в ничтожные отрезки времени. Он назвал эту область микрооптикой и показал, что она существенно отличается от макрооптики — оптики значительных световых мощностей, длительных времен наблюдения и больших по размерам источников излучения.

«За макрооптикой, — писал он в своей последней большой работе „Микроструктура света", — скрывается микрооптика, отличающаяся от первой в некоторых отношениях так же, как термодинамическое учение о веществе отличается от его молекулярной теории».

Вавилов ожидал от нового раздела оптики большой практической отдачи. Эти ожидания сбылись, особенно на тех направлениях, где микрооптика вступила в союз с другими науками или с техникой. Блестящий пример — успехи того детища квантовой механики (теоретической основы микрооптики) и радиотехники, которое в последние годы чаще всего называют квантовой радиотехникой. Эта новая наука позволила создать поистине чудесный физический прибор. У нас он называется, как мы сказали, обычно квантовым генератором и усилителем, а в странах Запада — «мазером», по начальным буквам английских слов: «microwave amplification by stimulated emission of radiation» — усиление очень коротких волн (подразумеваются электромагнитные волны) путем вынужденного излучения. Говорят также часто «лазер» или «оптический мазер», имея в виду только световые электромагнитные волны («light amplification by stimulated emission of radiation»).

Появились первые квантовые генераторы недавно. Однако уже стало чуть ли не традицией начинать рассказ о них с эпизодов из фантастического романа А. Н. Толстого «Гиперболоид инженера Гарина». Герой этого романа уничтожает бронированные корабли при помощи чрезвычайно тонкого, нерасходящегося луча света невероятной мощности. Плотность энергии в луче настолько велика, что корабли на расстоянии нескольких километров разрезаются светом с такой же легкостью, как режется горячим ножом ломтик масла. Сославшись на роман Толстого, обычно добавляют, что современные квантовые генераторы и усилители в некотором смысле напоминают «гиперболоид инженера Гарина»: они также дают остронаправленный пучок интенсивного света, способный перенести в пространство огромную энергию.

Правда, мощность реального пучка много меньше той, что показывается в романе. Наибольший разрушительный эффект, который удается сейчас получить, — это пробить на небольшом расстоянии от квантового генератора пакет из десяти бритвенных лезвий. Но если лабораторный прибор уже сегодня способен вызвать заметный разрушительный эффект, то почему бы не допустить, что возможности техники и науки завтрашнего дня позволят специалистам послать в пространство луч такой же интенсивности, как в произведении Толстого? И все же есть существенные обстоятельства, говорящие против аналогии.

Писатель имел в виду концентрацию в пространстве обычных световых волн, испускаемых горячим источником. Но из таких лучей, как показал профессор Г. Г. Слюсарев, принципиально невозможно создать пучок, способный произвести существенное разрушающее действие: пучок обязательно будет размазан в пространстве. Это качественное обстоятельство. Есть и количественное.

Простой расчет показывает, что для того чтобы обычным лучом света (как у Толстого) проколоть такую же пластинку, какую пробивает мазер, температура источника должна быть доведена до 10 миллиардов градусов. А ведь это в полтора миллиона раз горячее Солнца!

Какое же бессчетное количество солнц должно быть сконцентрировано в «гиперболоиде», чтобы, собрав их лучи, разрезáть настоящие корабли!

Как выясняется, создавать высокие плотности лучистой энергии в пространстве можно, только не средствами макрооптики, как в романе А. Н. Толстого, а средствами микрооптики, в возможности которой так верил С. И. Вавилов.

Если к мазеру подходить как к мирному орудию, здесь ясно вырисовываются заманчивые перспективы. Самые невероятные на первый взгляд идеи перестают казаться несбыточными, как только выясняется, что для их реализации можно применить устройства квантовой радиофизики.

Вот примеры.

1958 году американцам удалось принять отраженный сигнал радиолокатора, посланный к Венере на волне длиной 3 сантиметра. Немного времени спустя такой опыт и еще успешнее — с более мощным сигналом — был проведен советскими учеными.

Чтобы ясно представить себе значение этого события, надо вспомнить одно соотношение. Оно гласит, что плотность энергии отраженного луча, принимаемого локатором, убывает по сравнению с плотностью энергии первоначального луча пропорционально четвертой степени расстояния от цели. Шофер, читающий письмо при отраженном от стены свете фар своей машины, вряд ли разглядит хотя бы букву, если отъедет от стены вдвое дальше, чем вначале: в кабине станет в 16 раз темнее.

Применив это соотношение для вычисления мощности луча, вернувшегося на Землю после отражения от Венеры, получим потрясающе малую величину. По подсчетам зарубежных авторов, относящимся к американскому опыту, отраженный от Венеры космический радиосигнал попал в приемное устройство, имея мощность всего лишь в одну миллиардную часть миллиардной доли одной миллиардной ватта (в числах это выражается единицей, деленной на единицу с двадцатью семью нулями).

И тем не менее сигнал был принят! Его усилил, сделал явственным квантовый усилитель, работающий в радиодиапазоне.

Позднее с помощью аналогичного усилителя успешно принимались сигналы с космических ракет, удалившихся от Земли на многие миллионы километров.

Наряду с мазерами, радиоволновыми генераторами и усилителями все активнее включаются в человеческую жизнь, становятся надежными помощниками специалистов и оптические квантовые генераторы и усилители — лазеры.

Очень скоро выяснились их мирные возможности. Например, во Франции они нашли применение в глазной хирургии для прижигания кровоизлияний в сетчатой оболочке глаза. Такая операция длится всего несколько микросекунд вместо одной без малого секунды, как раньше. Прежний срок являлся слишком большим, так как при этом нагревались и соседние, здоровые части сетчатки.

оптических генераторах длины используемых электромагнитных волн сократились с сантиметров до десятитысячных долей миллиметра, и «радиосигнал», предназначенный для усиления, засветился: он перешел из радиодиапазона в область видимого света.

Со времен Максвелла любой старшеклассник знает, что знаменитая череда различных излучений — сейчас сюда относятся гамма-излучение, рентгеновское, ультрафиолетовое, световое, инфракрасное и радио — различается лишь частотами колебаний, или длинами волн. Природа же их одинакова — это электромагнитные волны. Казалось бы, чего проще, изменяя конструкцию радиопередатчиков, постепенно уменьшать длины волн и привести их в область видимых радиосигналов? Однако ничего не получалось. Добрых полстолетия никакими ухищрениями никому не удавалось создать радиостанцию, работающую на волнах порядка 430–700 миллимикронов — в диапазоне, доступном человеческому глазу. Самая короткая волна, полученная при помощи электромагнитного генератора, была чуть меньше миллиметра, то есть миллиона миллимикронов.

А между тем природа щедро обеспечила ученых сверхкоротковолновыми радиогенераторами. Таковы атомы, точнее, атомы светящихся веществ. По размерам и по мощности они миниатюрны. Зато в смысле простоты конструкции это идеальные радиостанции: число деталей в них сведено до недостижимого в технике минимума — единицы, в крайнем случае, десятки.

Чтобы понять, как посылает свои электромагнитные импульсы такое миниатюрное устройство, надо вспомнить картину энергообмена в атоме, нарисованную еще в начале века Максом Планком и Нильсом Бором. Чем-то эта картина напоминает, образно говоря, стрельбу из пистолета.

Чтобы атом отдал энергию — «выстрелил», его надо вначале «зарядить»: ввести в него энергию со стороны. Если пистолет стреляет только целыми и обладающими одинаковой энергией пулями, то примерно так же «стреляет» и атом. Атом испускает и поглощает электромагнитную энергию не непрерывно, а скачкообразно, очень маленькими порциями, — квантами, или фотонами. Каждая из этих порций совершенно точно отмерена и соответствует определенной частоте колебаний, или длине волны.

Процесс энергообмена в атоме протекает так. Начнем с момента, когда атом «не заряжен», пребывает, как говорят физики, в невозбужденном, основном состоянии. Такой атом не может испускать энергию — он может ее лишь поглощать. Положим, что это и произошло: в атом попал извне квант вполне определенной величины (как правило, атом поглощает лишь один квант, причем соответствующий строго определенной частоте колебаний). Поглотив этот квант, атом в тот же миг скачкообразно переходит в возбужденное состояние. «Пистолет» заряжен. Как же происходит «выстрел»? Оказывается, есть два способа отдачи энергии возбужденным атомом, сопровождающихся переходом его в основное (или в некоторое промежуточное) состояние: спонтанно, то есть самопроизвольно, без вмешательства извне, и вынужденно, под влиянием облучения. обоих случаях из атома вылетает запасенный им ранее, при возбуждении, квант энергии, но второй способ, как показал еще открывший его Альберт Эйнштейн, эффективнее.

Замечательно, что квант, испущенный атомом в результате вынужденного излучения, ничем не отличается от тех квантов, которые вызвали его излучение. Существенно — позже мы узнаем почему, — что эти кванты совершенно одинаковы: имеют одинаковую частоту, поляризацию и направление распространения. Излученный таким образом квант органически входит в вызвавший его излучение поток и усиливает его.

Второй способ часто называют индуцированным излучением. Открыт он был давно — в 1917 году, однако долго оставался предметом чистой теории. Никому не приходило в голову, что от него может быть какой-нибудь прок. Неожиданно явление индуцированного излучения оказалось дверью в новую область прикладной физики: оно легло в основу действия квантовых генераторов.

Однако об этом мы поговорим несколько позднее. Сперва надо разобраться, почему обычные светящиеся тела до последних лет не удавалось использовать как генераторы световых радиоволн.

Прежде всего надо ясно представить себе, чем электромагнитные волны, излучаемые радиостанцией, отличаются от электромагнитных волн, испускаемых электрической лампой накаливания.

Конечно, это различие связано с длиной волны, но посмотрим внимательнее, в чем оно заключается.

Чтобы лучше разобраться в (честно скажем) не совсем простом вопросе, обратимся к выручалочкам-аналогиям.

Радиостанция излучает чрезвычайно упорядоченные волны, которые можно сравнить с морской зыбью — одна волна в точности похожа на все остальные. Электрическая же лампочка излучает одновременно всевозможные световые волны: здесь нет упорядоченности, здесь хаос. Прежде всего эта хаотичность излучения электрической лампочки связана с тем, что белый свет — это беспорядочная смесь всех цветов радуги, которым соответствуют световые волны разнообразных длин. Их можно уподобить морю в центре циклона, где все бурлит и где в вихре брызг невозможно различить отдельные волны.

Но есть и другая, очень важная сторона этой хаотичности: отдельные волны в излучении электрической лампочки, как говорят физики, некогерентны между собой — между ними нет согласованности; это различие между некогерентным и когерентным (согласованным) излучениями похоже на разницу между шумом толпы и пением хора.

Энергия, излучаемая лампой, распределена между всеми длинами волн. Если же мы захотим получить от нее одноцветный свет, например отфильтровав его цветным стеклом, то яркость света окажется очень малой — большая часть энергии затратится на нагревание фильтра.

С 1955 года развитие радиофизики пошло семимильными шагами, и квантовые приборы начали ставить рекорды во многих областях науки и техники. Например, был предложен метод, по которому можно построить часы небывалой точности: за десятки тысяч лет непрерывного хода они будут отставать или спешить менее чем на секунду.

Количество конструкций квантовых генераторов все множится, но принцип их работы в основном не изменяется. Описать его можно на примере рубинового генератора, построенного американским физиком Т. Майманом.

Искусственный рубин, который применяется в этом генераторе, представляет собой окись алюминия (корунд). Сам по себе корунд прозрачен. Столь характерный для рубина красный цвет обусловливается атомами хрома, которые в небольшом количестве замещают атомы алюминия и сильно поглощают зеленый свет. Торцы стерженька из рубина строго параллельны. Они очень тщательно отполированы и посеребрены так, что образуют зеркальца, обращенные друг к другу. Одно зеркальное покрытие полупрозрачно. Источниками индуцированного излучения в этом приборе являются атомы хрома, возбуждаемые мощной вспышкой газоразрядной импульсной лампы, дающей широкополосный, так называемый подкачивающий, свет.

Процесс создания при помощи рубина остронаправленного и мощного потока квантов напоминает цепную реакцию образования нейтронов в урановых котлах. Под влиянием поглощенного зеленого света, обладающего большей энергией, чем красный, все большее количество атомов хрома приходит в возбужденное состояние. До некоторого момента рубиновый кристалл будет при этом испускать лишь красное флюоресцентное свечение в сравнительно широком интервале спектра, причем свечение распространится равномерно во все стороны. Кванты, отражающиеся от одной зеркальной стенки к другой, все время увеличиваются в числе: многократно отражаясь, каждый квант столь же многократно проходит сквозь рой возбужденных атомов и вызывает цепную реакцию индуцированного излучения новых таких же квантов.

При этом луч все время сужается, становясь все более мощным. Пучок лучей, распространяющийся между зеркалами вдоль оси кристалла, постепенно подавляет лучи, распространяющиеся в других направлениях. Плотность энергии в нем повышается, потому что происходят обе концентрации, о которых мы говорили: концентрация по направлению в пространстве и концентрация по частоте колебаний.

Когда эта общая концентрация достигает некоторой критической степени и кристалл начинает генерировать свет, как радиостанция — радиоволну, ослепительная рубиновая молния прокалывает пространство.

Любое вновь открытое физическое явление немедленно вызывает у исследователя вопрос: «Какой в нем прок для человека?»

Какой же прок науке, производству от квантовых генераторов?

Рассмотрим еще один пример: величайший естественный светильник нашей части мира — Солнце. Клокочущий «котел» космической энергии отдает с одного квадратного сантиметра своей поверхности около 10 киловатт излучения. Конечно, это немало. Это очень высокая плотность излучения. Но не следует забывать, что речь идет о хаотическом (неупорядоченном), разноволновом излучении. отличие от радиостанции, отдающей всю энергию на одной частоте, главная фабрика тепла нашей части мира работает на множестве частот.

Чтобы не обременять читателя расчетом, заметим, что если бы можно было выделить полоску шириной 1 мегагерц в области зеленого света, где Солнце излучает максимальную энергию, то обнаружилось бы, что каждый квадратный сантиметр его поверхности производит мощности всего-навсего… одну стотысячную ватта.

Насколько это мало, показывает сравнение солнечной поверхности с искусственными передатчиками, работающими в телевизионном диапазоне спектра радиоволн. Такие передатчики легко вырабатывают 10 тысяч ватт в полосе гораздо более узкой, чем 1 мегагерц. Как источники «одноцветных» радиоволн они мощнее Солнца в миллиарды раз.

Белый свет, излучаемый любым тепловым источником, можно сравнить с шумом. акустике даже существует термин «белый шум», обозначающий шум, в котором беспорядочно смешаны всевозможные звуки.

Принципиальная разница между световыми неупорядоченными волками и радиоволнами проявляется при попытках сконцентрировать в возможно меньшую область пространства возможно бóльшую электромагнитную энергию.

Лампа накаливания излучает свет во все стороны, и никакая оптическая система не может собрать его в одну точку. лучшем случае в фокусе линзы получится небольшое изображение накаленной нити. Даже самые совершенные прожекторы дают заметно расходящийся луч, так как источником в них является накаленная нить или электрическая дуга, которая не может быть сделана очень малой.

Упорядоченные электромагнитные волны, излучаемые радиостанцией, легко поддаются управлению. Они могут быть сфокусированы в пучки, расходимость которых определяется лишь размерами применяемых антенн. Чем больше антенна, тем ýже пучок.

Концентрируясь двояко — по направлению в пространстве и по заданной частоте, — радиоволны могут дать такие высокие плотности электромагнитной энергии на одной волне, какие не бывают даже в недрах звезд.

Вот почему ученые так упорно искали новые возможности энергетики именно в радиодиапазоне.

Мне вспоминается один забавный эпизод в архангельском порту. Катерок отвозил нас с берега на пароход, стоявший довольно далеко в море. Один из пассажиров махал рукой провожавшей его женщине, и оба молча улыбались: говорить прощальные слова было явно бесполезно — их заглушил бы шум. Вдруг — это поняли все по изменившемуся виду женщины — она о чем-то вспомнила. Она закричала, замахала рукой, пытаясь что-то объяснить. Увы, мы были слишком далеко, и наш катерок, рокоча мотором, продолжал увеличивать расстояние. И тут случилось нечто, всех нас развеселившее. Неожиданно на берегу наступила тишина. Люди (в основном молодежь, народ сознательный), видимо, догадались, что дело важное, и замолчали. Потом раздалось мощное скандирование хора:

— Клю-чи-от-квар-ти-ры-у-На-за-ро-вых! Клю-чи-от-квар-ти-ры-у-На-за-ро-вых…

Мужчина понял и радостно закивал головой.

Я вспомнил этот случай в связи с рассказом о квантовых усилителях. Чем-то эпизод в архангельском порту напоминает замену хаотического светового переноса энергии упорядоченным радиоволновым переносом. Любопытны две ступени этого перехода: шум толпы выключается, затем толпа включается вновь, но уже единым хором. Мощность одиночного сигнала резко возрастает, а действие помех исчезает. Чем не намек на теоретическую возможность перейти от светового, неупорядоченного способа передачи на расстояние электромагнитной лучевой энергии к упорядоченному радиоволновому способу!

Вернемся на минуту снова к роману А. Н. Толстого. Можно ли серьезно видеть в фантастическом изобретении инженера Гарина пророческую мысль? Нет, нельзя, конечно. Если перевести на физический язык идею, лежащую в основе произведения Толстого, то это идея концентрации беспорядочной тепловой энергии раскаленных атомов; она бесперспективна. А та идея, которая заложена в современных квантовых генераторах и усилителях, основана совсем на другом физическом явлении: на резонансе, на индуцированном — не тепловом — излучении.

Она не имеет ничего общего с идеей «гиперболоида инженера Гарина».

Как же физикам удалось в конце концов решить полувековую задачу — построить генератор «бесшумного» света? Каким воздействием на атомы они заставили их испускать световые кванты, одинаковые по частоте и, как мы сейчас увидим, по направлению (что очень важно для концентрации и передачи больших количеств энергии)?

Проблемой № 1 на этом пути была проблема создания такой материальной среды — твердой, жидкой или газообразной, в которой возбужденные атомы количественно преобладали бы над невозбужденными. Почему? Да потому, что только возбужденные атомы способны излучать энергию. Невозбужденные же атомы, которые способны лишь поглощать энергию, являются, по меткому выражению советского физика Н. Г. Басова, «нахлебниками».

От них надо избавиться, но как? Дело это совсем нелегкое. Ведь каждое вещество состоит из возбужденных и невозбужденных атомов, и хотя число первых возрастает с нагреванием, но сколько бы мы ни поднимали температуру вещества, количество «нахлебников» всегда будет больше количества «рабочих», возбужденных атомов. Поэтому в обычных условиях все тела поглощают кванты, падающие на них извне. Если же тело не облучается, то накопленные им кванты под влиянием спонтанного излучения «высвечиваются» наружу и переходят в тепло.

Надо было как-то перехитрить природу: создать искусственно такую «активную среду», чтобы большинство ее атомов или молекул могло быть возбуждено.

Одно из первых предложений в этом направлении предусматривало создание активной среды в газах. «Почему бы, — задали себе вопрос физики, — не рассортировать газовые молекулы на две группы так, чтобы возбужденные молекулы собрались в узкий пучок, а невозбужденные отклонились бы в сторону?»

Потом появились предложения и в отношении твердой среды. Постепенно проблема № 1, при всей ее сложности, получила свое решение, причем не только принципиальное, но и чисто практическое.

Становилась на очередь проблема № 2: как использовать активную среду, как ее заставить с максимальной быстротой начать излучение? Речь шла о фантастической возможности «размножать» кванты.

Вот тут-то и была извлечена на свет полузабытая, высказанная мимоходом при исследовании другого явления идея Эйнштейна о существовании индуцированного излучения.

Уже в 1951 году три советских физика — В. А. Фабрикант, М. М. Вудынский и Ф. А. Бутаева — изложили в авторской заявке краткую теорию усиления света и радиоволн путем создания активной среды и получения индуцированного излучения. Условия, необходимые для прямого наблюдения такого излучения, Фабрикант сформулировал еще раньше, в 1940–1941 годах, в бытность свою учеником С. И. Вавилова. Но начавшаяся война прервала исследования и задержала создание квантового генератора. Это предложение прошло мимо внимания ученых.

1952 году одновременно в СССР (Н. Г. Басов и А. М. Прохоров) и в Америке (Ч. Таунс, Дж. Гордон, X. Цайгер и отдельно от них Дж. Вебер из Мерилендского университета) был предложен принцип генерации и усиления электромагнитного излучения в квантовых системах — принцип, основанный на создании активной среды и использовании индуцированного излучения.

1957–1958 годах советские ученые Н. Г. Басов, Б. М. Вул, Ю. М. Попов и их американские коллеги Ч. Таунс и А. Шавлов независимо друг от друга разработали принципы конструирования квантовых генераторов и усилителей в диапазоне видимого света.

1959 году профессора (ныне действительные члены АН СССР) Николай Геннадиевич Басов и Александр Михайлович Прохоров были удостоены Ленинской премии за разработку нового принципа генерации и усиления радиоволн (создание молекулярных генераторов и усилителей). А в 1964 году за эту же работу им была вручена высшая награда Западного мира — Нобелевская премия. Вместе с ними был награжден и американец Ч. Таунс.

Вот, например, часы фантастической точности, которые могут быть созданы с их помощью. Зачем они? Оказывается, они уже сегодня нужны для вождения самолетов и кораблей, для точного измерения больших расстояний. Завтра они понадобятся в межпланетной космонавтике, так как без них невозможно обеспечить точное попадание космических кораблей на другие планеты. Они найдут применение также в науке, в том числе для проверки некоторых утверждений теории относительности.

Фокусировка когерентного излучения в малых объектах позволяет создать высокие концентрации энергии. Новые источники света в миллионы раз превосходят яркость Солнца. Энергия этих источников может быть преобразована в другие виды энергии.

Мы уже говорили о давлении света. Оно обычно невероятно мало и может быть обнаружено лишь очень тонкими лабораторными приборами. А вот рубиновая молния, вырывающаяся из посеребренного торца квантового генератора, способна создать буквально фантастическое давление — порядка миллиона атмосфер.

Располагая таким высоким световым давлением, ученые и инженеры смогут осуществить ряд важных в научном и промышленном отношении процессов: исследование свойств веществ в сильных электрических полях, ускорение заряженных частиц, ускорение химических реакций, точную обработку различных материалов. При помощи квантовых генераторов и усилителей могут быть разрешены многие важные проблемы физики твердого тела, спектроскопии, биологии и медицины. Освоение волн видимого диапазона поможет уже в близком будущем создать необычайно высокоскоростные вычислительные машины.

Пучок лучей, испускаемый лазером, расходится гораздо меньше, чем свет любого другого источника. опытах по передаче сигналов на 40 километров эти лучи разошлись всего на 30 метров в диаметре. Угол расходимости пучка радиоволн пропорционален длине волны и обратно пропорционален размеру передающей антенны. Это сразу показывает преимущество световых радиостанций перед работающими на более длинных волнах. По подсчетам Басова, чтобы осветить с Земли на Луне площадку в 1 квадратный километр в оптическом диапазоне волн, понадобится прожектор диаметром всего 20–30 сантиметров. сантиметровом диапазоне радиоволн для этого потребуется антенна диаметром более километра.

Отсюда вывод, что для дальней радиосвязи особенно выгодно пользоваться лазерами. Высчитано, что при помощи существующих уже сегодня квантовых генераторов и усилителей в диапазоне световых волн возможно осуществление радиосвязи на расстояние в несколько световых лет, то есть на расстояние до ближайших звезд.

печати появились сообщения, что именно этим путем мы скоро сможем ответить на вопрос: «Есть ли там кто-нибудь? Живут ли в глубинах космоса разумные существа, способные принять наши сигналы и как-то на них ответить?» Это сказано в увлечении: сигнал не может быть замечен на фоне звезды, ее шумового излучения. Но вот если бы сигнал посылали с корабля, не излучающего шума, тогда с утверждением, приведенным выше, можно было бы согласиться.

Когда-то люди пользовались оптическим телеграфом. На больших расстояниях одна от другой стояли мачты, на которых то вспыхивали, то угасали световые сигналы. Существовал также оптический телефон. Сейчас даже имена изобретателей этих устройств забыты. И вдруг, как часто бывает в науке, старая идея возрождается на новый лад. С созданием оптических квантовых генераторов началось радиотехническое освоение нового диапазона сверхкоротких электромагнитных волн.

Осуществление радиосвязи в таком диапазоне позволяет передавать чрезвычайно большой объем информации: принципиально один передатчик световых волн может вести одновременно передачу десятка тысяч телевизионных программ. Вместе с тем благодаря уменьшению расходимости пучка радиоволн и использованию направленности радиосвязи новый способ посылки сигналов позволяет очень сильно повысить дальность радиопередачи.

Когда был изобретен и впервые применен в войне против гитлеровской Германии радар, английские солдаты говорили с уважением о новом вооружении: «Он все может, разве что яичницы не сделает». О лазерах так не скажешь: они способны «зажарить яичницу». Они могут за несколько десятитысячных долей секунды поднять температуру вещества до 8000 градусов.

Не в этом, однако, главное. О квантовых генераторах и усилителях можно сказать, что область их применения почти неограниченна. Это одно из самых многообещающих открытий, сделанных в последние годы.


Категория: ОТКРЫВАЕМ ЗАКОНЫ ФИЗИКИ | Добавил: tineydgers (30.08.2013)
Просмотров: 660 | Теги: занимательная физика, физика в школе, законы физики, дидактический материал по физике, Урок физики в школе, рассказы о физике для школьников | Рейтинг: 0.0/0
» Поиск
» АСТРОНОМИЯ

УДИВИТЕЛЬНАЯ
  АСТРОНОМИЯ


ЗАГАДОЧНАЯ СОЛНЕЧНАЯ
  СИСТЕМА


АСТРОНОМИЯ В ВОПРОСАХ И
  ОТВЕТАХ


УДИВИТЕЛЬНАЯ
  КОСМОЛОГИЯ


КРОССВОРДЫ ПО АСТРОНОМИИ

» ИНФОРМАТИКА

ЗАНИМАТЕЛЬНАЯ
  ИНФОРМАТИКА


К УРОКАМ
  ИНФОРМАТИКИ


СПРАВОЧНИК ПО
  ИНФОРМАТИКЕ


ТЕСТЫ ПО ИНФОРМАТИКЕ

КРОССВОРДЫ ПО
  ИНФОРМАТИКЕ

» ОБЩЕСТВОЗНАНИЕ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ В 7 КЛАССЕ


ТЕСТЫ. 9 КЛАСС

САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ. 9 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ В
  ФОРМАТЕ ЕГЭ


ШКОЛЬНЫЕ ОЛИМПИАДЫ
   ПО ОБЩЕСТВОВЕДЕНИЮ

» ХИМИЯ
» ОБЖ

ЧТО ДЕЛАТЬ ЕСЛИ ...

РЕКОРДЫ СТИХИИ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ ОБЖ В 11 КЛАССЕ


ПРОВЕРОЧНЫЕ РАБОТЫ ПО
  ОБЖ


ТЕСТЫ ПО ОБЖ. 10-11 КЛАССЫ

КРОССВОРДЫ ПО ОБЖ

» МХК И ИЗО

СОВРЕМЕННАЯ
  ЭНЦИКЛОПЕДИЯ ИСКУССТВА


ВЕЛИКИЕ ТЕАТРЫ МИРА

САМЫЕ ИЗВЕСТНЫЕ
  ПАМЯТНИКИ


МУЗЕЕВ МИРА

ВЕЛИКИЕ СОКРОВИЩА МИРА

СОКРОВИЩА РОССИИ

ИЗО-СТУДИЯ

КРОССВОРДЫ ПО МХК

» ЕСТЕСТВОЗНАНИЕ

ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ
  УРОВЕНЬ. 10 КЛАСС


УДИВИТЕЛЬНАЯ ИСТОРИЯ
  ЗЕМЛИ


ИСТОРИЯ ОСВОЕНИЯ ЗЕМЛИ

ВЕЛИЧАЙШИЕ
  АРХЕОЛОГИЧЕСКИЕ ОТКРЫТИЯ


УДИВИТЕЛЬНЫЕ ОТКРЫТИЯ
  УЧЕНЫХ


РАЗВИВАЮШИЕ ЭКСПЕРИМЕНТЫ
  И ОПЫТЫ ПО
  ЕСТЕСТВОЗНАНИЮ


САМЫЕ ИЗВЕСТНЫЕ
  НОБЕЛЕВСКИЕ ЛАУРЕАТЫ

» ГОТОВЫЕ СОЧИНЕНИЯ

РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА
  (на русск.яз.)


УКРАИНСКИЙ ЯЗЫК

УКРАИНСКАЯ ЛИТЕРАТУРА

ПРИКОЛЫ ИЗ СОЧИНЕНИЙ

» ПАТРИОТИЧЕСКОЕ ВОСПИТАНИЕ
» УЧИТЕЛЬСКАЯ
» МОСКВОВЕДЕНИЕ ДЛЯ ШКОЛЬНИКОВ

ЗНАКОМИМСЯ С МОСКВОЙ

СТАРАЯ ЛЕГЕНДА О
  МОСКОВИИ


ПРОГУЛКИ ПО
  ДОПЕТРОВСКОЙ МОСКВЕ


МОСКОВСКИЙ КРЕМЛЬ

БУЛЬВАРНОЕ КОЛЬЦО

» ЭНЦИКЛОПЕДИЯ ОБО ВСЕМ НА СВЕТЕ
» ПОЗНАВАТЕЛЬНО И ЗАНИМАТЕЛЬНО

ДИКОВИНКИ СО ВСЕГО МИРА

УДИВИТЕЛЬНАЯ ЛОГИКА

ЗАНИМАТЕЛЬНАЯ
  ПСИХОЛОГИЯ


МИНЕРАЛЫ И ДРАГОЦЕННЫЕ
  КАМНИ


УДИВИТЕЛЬНАЯ АРХЕОЛОГИЯ

ДИВНАЯ ПАЛЕОНТОЛОГИЯ

» БЕСЕДА ПО ДУШАМ С ТИНЕЙДЖЕРАМИ

МЕЖДУ НАМИ ДЕВОЧКАМИ

МЕЖДУ НАМИ МАЛЬЧИКАМИ

НАС ЖДЕТ ЭКЗАМЕН

» Статистика

Онлайн всего: 15
Гостей: 15
Пользователей: 0
» Вход на сайт

» Друзья сайта
Copyright MyCorp © 2024 Яндекс.Метрика Рейтинг@Mail.ru Каталог сайтов и статей iLinks.RU Каталог сайтов Bi0