Т  И  Н  Е  Й  Д  Ж  Е  Р  Ы

Для тех, кто учится и учит


Главная Мой профиль Выход                      Вы вошли как Гость | Группа "Гости" | RSS
Четверг, 21.11.2024, 11:48:44
» МЕНЮ САЙТА
» ОТКРЫТЫЙ УРОК

 РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

НАЧАЛЬНАЯ ШКОЛА

УКРАИНСКИЙ ЯЗЫК

ИНОСТРАННЫЕ ЯЗЫКИ

УКРАИНСКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА

МАТЕМАТИКА

ИСТОРИЯ

ОБЩЕСТВОЗНАНИЕ

БИОЛОГИЯ

ГЕОГРАФИЯ

ФИЗИКА

АСТРОНОМИЯ

ИНФОРМАТИКА

ХИМИЯ

ОБЖ

ЭКОНОМИКА

ЭКОЛОГИЯ

ФИЗКУЛЬТУРА

ТЕХНОЛОГИЯ

МХК

МУЗЫКА

ИЗО

ПСИХОЛОГИЯ

КЛАССНОЕ РУКОВОДСТВО

ВНЕКЛАССНАЯ РАБОТА

АДМИНИСТРАЦИЯ ШКОЛЫ

» РУССКИЙ ЯЗЫК
МОНИТОРИНГ КАЧЕСТВА ЗНАНИЙ. 5 КЛАСС

ОРФОЭПИЯ

ЧАСТИ РЕЧИ


ТЕСТЫ В ФОРМАТЕ ОГЭ.
   5 КЛАСС


ПУНКТУАЦИЯ В ЗАДАНИЯХ И
  ОТВЕТАХ


САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ.10 КЛАСС


КРОССВОРДЫ ПО РУССКОМУ
  ЯЗЫКУ
» ЛИТЕРАТУРА
ВЕЛИЧАЙШИЕ КНИГИ ВСЕХ
  ВРЕМЕН И НАРОДОВ


КОРИФЕИ ЛИТЕРАТУРЫ

ЛИТЕРАТУРА В СХЕМАХ И
  ТАБЛИЦАХ


ТЕСТЫ ПО ЛИТЕРАТУРЕ

САМЫЕ ИЗВЕСТНЫЕ МИФЫ И
  ЛЕГЕНДЫ


КРОССВОРДЫ ПО ЛИТЕРАТУРЕ
» ИСТОРИЯ
» АНГЛИЙСКИЙ ЯЗЫК
ИНОСТРАННЫЕ ЯЗЫКИ.
  РАЗГОВОРНЫЕ ТЕМЫ


САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
  ПО АНГЛИЙСКОМУ ЯЗЫКУ


ТЕСТЫ ПО ГРАММАТИКЕ
  АНГЛИЙСКОГО ЯЗЫКА


ТЕМАТИЧЕСКИЙ КОНТРОЛЬ.
  9 КЛАСС


ПОДГОТОВКА К ЕГЭ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ


КРОССВОРДЫ ПО
  АНГЛИЙСКОМУ ЯЗЫКУ
» МАТЕМАТИКА - ЦАРИЦА НАУК
» БИОЛОГИЯ
» ГЕОГРАФИЯ
» ФИЗИКА
» Категории раздела
ЕГЭ ПО ФИЗИКЕ [32]
ЕГЭ ПО БИОЛОГИИ [112]
ЭНЦИКЛОПЕДИЯ ОБО ВСЕМ НА СВЕТЕ [1692]
ВЕЛИКОЛЕПНАЯ СОТНЯ [5710]
ПО СТРАНАМ И КОНТИНЕНТАМ [265]
ОСНОВЫ ПРАВОСЛАВНОЙ КУЛЬТУРЫ И МИРОВЫХ РЕЛИГИЙ [271]
УДИВИТЕЛЬНАЯ БИОЛОГИЯ [174]
ЗАНИМАТЕЛЬНАЯ ПСИХОЛОГИЯ [19]
УДИВИТЕЛЬНАЯ ХИМИЯ [40]
ДРЕВНИЕ ЦИВИЛИЗАЦИИ [22]
УДИВИТЕЛЬНАЯ СОЛНЕЧНАЯ СИСТЕМА [14]
УДИВИТЕЛЬНЫЕ ОТКРЫТИЯ [15]
УДИВИТЕЛЬНАЯ АРХЕОЛОГИЯ [39]
УДИВИТЕЛЬНАЯ ПАЛЕОНТОЛОГИЯ [14]
УДИВИТЕЛЬНЫЕ ЯВЛЕНИЯ ПРИРОДЫ [0]
УДИВИТЕЛЬНАЯ ЛОГИКА [35]
ПАТРИОТИЧЕСКОЕ ВОСПИТАНИЕ [362]
ЭКЗАМЕНЫ [260]
ОБУЧАЮЩИЕ ИГРЫ НА УРОКАХ [197]
ИЗУЧАЕМ ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ [604]
УДИВИТЕЛЬНОЕ ЕСТЕСТВОЗНАНИЕ [178]
АСТРОНОМИЯ [70]
НАУЧНЫЕ РАЗВЛЕЧЕНИЯ [349]
ФИЗИКА [271]
МИНЕРАЛЫ И ДРАГОЦЕННЫЕ КАМНИ [112]
ДИКОВИНКИ СО ВСЕГО МИРА [78]
ПОСЛЕ УРОКОВ [242]
ПРЕДМЕТЫ ХУДОЖЕСТВЕННО-ЭСТЕТИЧЕСКОГО ЦИКЛА [100]
ПРЕДМЕТЫ ФИЗИКО-МАТЕМАТИЧЕСКОГО ЦИКЛА [139]
КЛАССНОЕ РУКОВОДСТВО [88]
ВОЕННАЯ ФОРМА ВТОРОЙ МИРОВОЙ [281]
ПОСЛОВИЦЫ И ПОГОВОРКИ ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЫ [18]
ПРЕПОДАВАНИЕ ИСТОРИИ [196]
МЕТОДИКА ПРЕПОДАВАНИЯ ОБЩЕСТВОЗНАНИЯ [71]
ПРЕПОДАВАНИЕ КУРСА "ЧЕЛОВЕК И ОБЩЕСТВО". 11 КЛАСС [51]
МАТЕМАТИКА [140]
КОНТРОЛЬНЫЕ РАБОТЫ ПО МАТЕМАТИКЕ [90]
ГИА ПО МАТЕМАТИКЕ В 9 КЛАССЕ. ТИПОВЫЕ ЗАДАНИЯ [11]
ИСТОРИЯ [25]
ЛИТЕРАТУРА [10]
ГЕОГРАФИЯ [91]
АНГЛИЙСКИЙ ЯЗЫК [114]
ОБЖ [37]
ОБЩЕСТВОЗНАНИЕ [80]
ТЕСТЫ ПО ИНФОРМАТИКЕ [100]
ЗАДАНИЯ И УПРАЖНЕНИЯ ПО ГЕОГРАФИИ [34]
МАТЕМАТИЧЕСКИЙ КРУЖОК В ШКОЛЕ [60]
РАЗНОУРОВНЕВЫЕ КОНТРОЛЬНЫЕ РАБОТЫ ПО ФИЗИКЕ [9]
ЕСТЕСТВОЗНАНИЕ [193]
ОНЛАЙН-УЧЕБНИКИ ПО ИСТОРИИ [110]
ГЕОМЕТРИЯ [31]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ГЕОГРАФИИ [78]
ТЕМАТИЧЕСКИЙ КОНТРОЛЬ ПО ГЕОМЕТРИИ [43]
ТЕСТЫ ПО ФИЗИКЕ [80]
СТРАНЫ И НАРОДЫ [216]
ТЕСТЫ ПО ФИЗИКЕ 11 КЛАСС [40]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ОБЩЕСТВОВЕДЕНИЯ [26]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ МАТЕМАТИКИ [101]
ПРОМЕЖУТОЧНОЕ ТЕСТИРОВАНИЕ ПО МАТЕМАТИКЕ [60]
МОСКВОВЕДЕНИЕ [67]
ТЕМАТИЧЕСКИЕ ТЕСТЫ ПО ИСТОРИИ РОССИИ [69]
ТЕСТЫ ПО ХИМИИ [14]
ПРОВЕРОЧНЫЕ РАБОТЫ ПО ХИМИИ [47]
КОНТРОЛЬНЫЕ РАБОТЫ ПО ХИМИИ [30]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ИСТОРИИ [177]
ТЕСТЫ ПО ОБЩЕСТВОЗНАНИЮ [24]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО ГЕОМЕТРИИ [12]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ХИМИИ [49]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО ФИЗИКЕ [60]
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ ПО МАТЕМАТИКЕ [110]
ИСТОРИЯ РОССИИ В РАССКАЗАХ ДЛЯ ШКОЛЬНИКОВ [132]
ТЕСТЫ ДЛЯ ОЦЕНКИ КАЧЕСТВА ОБУЧЕНИЯ ПО АЛГЕБРЕ [17]
КАРТОЧКИ С ЗАДАНИЯМИ ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ [15]
РУССКИЙ ЯЗЫК [51]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ФИЗИКИ [125]
ИНФОГРАФИКА ОБ ОБРАЗОВАНИИ [4]
ГЕОГРАФИЯ [134]
ИНФОРМАТИКА [52]
ПОДГОТОВКА К ЕГЭ ПО ХИМИИ [21]
ЛАБОРАТОРНЫЕ РАБОТЫ ПО ФИЗИКЕ [29]
БЕСЕДЫ С ТИНЕЙДЖЕРАМИ [167]
ИСТОРИЯ РОССИИ [105]
ОПОРНЫЕ СХЕМЫ ПО ФИЗИКЕ [49]
ЕГЭ ПО ИСТОРИИ [212]
ОПЫТЫ ПО ХИМИИ [103]
БОТАНИКА [14]

Метеориты и космическая минералогия

30 ноября 1954 года жительница городка Силакога (США, Алабама) Энн Ходжес возлежала на софе в своем таунхаусе, рассеянно слушая большой ламповый приемник – в те годы эра телевидения еще толком не наступила. За этим занятием дама задремала. Внезапно каменный метеорит весом около 4 кг пробил крышу, попал в приемник, совершенно разрушил его и, отскочив, поставил женщине синяк на ноге. Это был (и остается таковым) единственный строго документированный случай попадания метеорита в человека. Случаев же, описанных лишь очевидцами события, гораздо больше.

метеориты

Исторические хроники, летописи и изустные предания доносят до нас истории о том, как метеориты ранили и убивали людей, разрушали различные строения. Возможно, наиболее масштабная катастрофа такого рода произошла в 1490 году в Шаньси (Китай), когда (вроде бы) погибло 10 тыс. человек. Немецкий исследователь метеоритов Б. Шульц приводит и другие, правда, куда менее грандиозные безобразия небесных камней. Например, в 1650 году небольшой метеорит упал на территорию монастыря Санта-Мария делла Паче в Милане, где и застрял в груди францисканского монаха. Метеорит весил всего 8 г и был извлечен, но рана монаха воспалилась и привела к смерти. Неясно, правда, виновен ли тут метеорит или виновны хирурги того времени, ничего не знавшие об асептике. Ясно лишь, что коль скоро столь малый – размером в пулю – метеорит застрял в человеческом теле, то скорость его была достаточно высока. Следовательно, этот метеорит-крошка не мог быть «автономным» метеоритом – в таком случае он затормозился бы в атмосфере (если бы не сгорел) и выпал на Землю со скоростью свободного падения малого тела в атмосфере. Шишку на тонзуре монаха такой камешек посадить мог бы, но застрять в груди, подобно пуле, – однозначно нет. Если 8-граммовый метеорит сохранил скорость у земли, значит, он был фрагментом более крупного метеорита, расколовшегося на части сравнительно невысоко над землей. Такое тело, тормозясь в атмосфере, могло сохранить достаточно высокую скорость вплоть до столкновения с земной поверхностью.

«Вы пробовали зашвырнуть комара? Он не летит. Точнее, он летит, но сам по себе и плюет на вас», – шутил Михаил Жванецкий. А почему комар летит по своей воле, а не по параболе, как предписывает ему классическая механика? Почему камень можно забросить гораздо дальше, чем песчинку? Почему винтовочная пуля улетает километра на три-четыре, а снаряд тяжелого орудия при той же начальной скорости – раз в пять дальше?

Ответ прост: потому что масса тела зависит от куба его радиуса, а площадь поверхности – только от квадрата. Сила же трения о воздух зависит от площади поверхности тела. Следовательно, чем выше отношение масса/поверхность, тем меньше тормозится тело (любое, не только метеорит) в атмосфере. В 1929 году в Японии на маленькую девочку упал метеорит массой всего в несколько граммов и запутался в ее платье, не причинив девочке никакого вреда.

Но мы забежали вперед. Вернемся к истории взаимоотношений людей с космическими камнями. По-видимому, о падающих с неба камнях знали уже древние – египтяне, шумеры, индусы, китайцы и другие народы. В книге Иисуса Навина в главе X, стих II написано следующее: «Когда же азекеяне бежали от израильтян по скату горы Вефоронской, Господь бросал на них с небес большие камни до самого Азека, и они умирали: больше было тех, которые умерли от камней града, нежели тех, которых умертвили мечи сынов Израилевых». Если речь идет не о метафоре (что вряд ли) и не о заурядном камнепаде в горах, если все это не выдумка от начала до конца, то очень возможно, что злосчастные азекеяне попали под метеоритный дождь, случающийся чаще всего вследствие дробления очень большого, но не очень прочного метеорита еще довольно высоко в атмосфере.

Событие, напоминающее метеоритный дождь, описано и в 105-й Суре Корана.

Издревле почитаемый мусульманами черный камень в храме Кааба почти наверняка является метеоритом. Образец, по понятным причинам, получить невозможно, хотя и без ученых камень подвергается некоторой «утруске»: говорят, что, зацелованный миллионами паломников, он уже уменьшился по сравнению с первоначальной величиной чуть ли не вдвое.

В этой связи вспоминается, что рассказывают сотрудники Минералогического музея РАН об одном из экспонатов метеоритной коллекции, невзрачном с виду сером камне: «Этот метеорит распался в воздухе на три куска. Один утонул в болоте, второй у нас, а третий местные жители растолкли в порошок и съели». Зачем съели? Наверное, решили, что господь не зря послал им гостинец и надо приобщиться к благодати. Вроде все выжили после этой процедуры, и на том спасибо.

Тит Ливий писал, что около 200 года до н. э. во Фригии упал железный метеорит. Он был перевезен в Рим, где в течение веков служил предметом поклонения. В I веке н. э. Плиний сообщал об упавшем в 465 году до н. э. крупном метеорите, падение которого якобы предсказал философ Анаксагор: «Камень этот показывают и по сей день: он величиной с груженый воз и опаленного цвета… Однако сам факт частого падения камней с неба не подлежит сомнению».

В русской истории первый рассказ о падении метеорита содержится в Лаврентьевской летописи за 1091 год.

Плиний нисколько не преувеличил, говоря о частом падении камней с неба. Правда, такие понятия, как «часто» или «редко», всегда относительны. Действительно, каждый год на Землю падает несколько метеоритов, не успевших сгореть в атмосфере. Однако представим себе размеры Земли, сравним их с полем зрения человека и не станем удивляться тому, что подавляющее большинство людей никогда не видело падения метеорита. Гораздо проще найти давным-давно выпавший метеорит, чем наблюдать его путь по небу и подобрать его еще «свеженьким».

За одну только кайнозойскую эру на Землю выпало предостаточно небесных камней. Можно считать, что на каждом квадратном километре земной поверхности в почвенных слоях находится в среднем один метеорит.

Был случай, когда метеорит нашли в детской песочнице. Конечно, он не выпал прямо в песочницу, а был привезен из карьера вместе с песком. Был случай, когда лот, опущенный с борта научно-исследовательского судна для забора пробы донного грунта, подцепил вместе с грунтом и метеорит. Выпавшие еще в мезозое метеориты находили в мраморах. В Антарктиде есть места, где понемногу сползающий с ледяного купола лед натыкается на скалы и не ползет дальше к океану, а медленно тает – точнее сказать, испаряется под солнечными лучами. Всем известно, как вытаивают, выступая на поверхность, камни из ледников. Точно так же вытаивают из антарктического льда и метеориты, упавшие на ледяной купол, может быть, миллионы лет назад. Организуются даже специальные экспедиции для поиска таких метеоритов. Хорошими «хранилищами» для древних метеоритов являются также каменистые (не песчаные) пустыни.

Около 5 % найденных метеоритов – железные, примерно 70 % – железо-каменные, 1–2% приходится на долю углистых хондритов, представляющих собой рыхлые шлаки, а остальное – чисто каменные метеориты. Впрочем, не исключено, что процент каменных метеоритов на самом деле выше, поскольку их порой трудно отличить на вид от заурядных камней чисто земного происхождения. В прошлые же века, когда люди не могли и мечтать о масс-спектрографах (поскольку не знали, что это такое), им непросто было идентифицировать даже железный метеорит, если только он не упал на их глазах. Ведь самородное железо, не имеющее отношения к камням с неба, все-таки изредка встречается (там, где имеются железные руды и восстановительная среда). Понятно, что это большая экзотика, космическое железо встречается гораздо чаще самородного земного, но об этом знаем мы – и не знали ученые прошлых веков. Ясно, что с идентификацией каменных метеоритов проблем у них было намного больше.

Ничего удивительного нет в том, что наука XVIII века отрицала саму возможность падения камней с неба. «В наше время было бы непростительно верить таким сказкам», «Если бы я сам увидел падение метеорита, то не поверил бы своим глазам», – вот типичные высказывания не каких-то твердолобых обскурантов, а вполне серьезных ученых того времени. Сам Лавуазье представил в 1772 году доклад группы ученых в Парижскую академию наук с заключением о том, что камни, которым приписывается небесное происхождение, суть не что иное, как обыкновенные земные булыжники, черная корка на них – след удара молнии, а «падения камней с неба физически невозможны». В 1790 году во Франции близ городка Барботан упал метеорит, что было документально засвидетельствовано бургомистром и городской ратушей. Известный химик Клод Бертолле откликнулся на это: «Как печально, что целый муниципалитет заносит в протокол народные сказки, выдавая их за действительно виденное, тогда как не только физической причиной, но и вообще ничем разумным это нельзя объяснить», – а Парижская академия выразила издевательское сожаление по поводу того, что Барботан имеет столь глупого бургомистра.

Однако не будем высокомерно посмеиваться над учеными. Что в 1790 году было известно науке о малых телах Солнечной системы? Ровным счетом ничего. Астрономы знали Солнце, Землю, еще шесть планет (включая открытый Гершелем Уран), несколько спутников планет – и все. До открытия первого астероида еще оставалось и лет, а до осознания того факта, что малых планет не одна, не две, не четыре, а великое множество, – и того больше. Бертолле был прав: наука того времени не могла объяснить падение небесных камней ничем разумным. Имелись, правда, свидетельства древних ученых и современных очевидцев, но разве мало было в европейской истории случаев временных массовых помешательств? Видели чертей, кикимор, призраков умерших, ведьм на помелах и прочее, что только может породить человеческое воображение при спящем разуме. Почему бы серьезному ученому XVIII столетия не счесть небесные камни небывальщиной из того же ряда? Пожалуй, он даже должен был так поступить – вплоть до получения более убедительных доказательств.

В 1772 году академик Петербургской академии наук П. Паллас в ходе своей экспедиции обратил внимание на странную массу «самородного железа» весом более 600 кг, найденную местным кузнецом еще в 1749 году. Паллас с большими трудностями доставил ее в Петербург. Масса состояла не из чистого железа, а из железа с каменными (оливиновыми) включениями. Теперь такие метеориты называются палласитами в честь Палласа, а сам привезенный им метеорит и поныне именуется «Палласовым железом». Фрагменты некоторых палласитов очень красивы в виде полированных пластинок и могут служить ювелирными украшениями.

В 1794 году немецкий физик Э. Хладни издал небольшую книжку «О происхождении найденной Палласом и других подобных ей железных масс и о некоторых связанных с этим явлениях природы». В ней и последующих публикациях он убедительно доказывал космическое происхождение Палласова железа и других «упавших с неба» камней. Хладни был не каким-то бургомистром провинциального городка, а серьезным ученым, поэтому отмахнуться от его работ оказалось сложнее. Разгорелась дискуссия, в которой приняли участие многие выдающиеся ученые того времени, в том числе Ольберс и Лаплас. Трудно сказать, как долго сохранялась бы неопределенность, если бы в 1803 году в районе французского города Эгль (опять Франция!) не выпал целый метеоритный дождь из 3000 каменных осколков. Лишь после исследования данного феномена ученый мир признал: падение камней с неба возможно. Не забудем, что к тому времени были уже открыты Церера и Паллада. Ученым оставалось сделать лишь один логический шаг: предположить, что в Солнечной системе могут существовать и другие тела, не являющиеся спутниками планет, и что эти тела могут быть сколь угодно малыми. А если так, то почему бы им иногда не сталкиваться с Землей и не выпадать на нее в виде метеоритов?

С этого времени берет свое начало метеоритика – наука на стыке астрономии и геологии. Соответственно, занимаются ею либо астрономы, либо геологи. Материал для изучения постоянно пополняется, так как, во-первых, находятся метеориты, упавшие давным-давно, а во-вторых, падают новые метеориты.

Найденный метеорит называется (надо же его как-то назвать) по имени ближайшего к месту находки населенного пункта, а если такового нет, то берется любой местный топоним, например название горы, реки или пустыни. Типичные название: метеорит Бендл, метеорит Богуславка, метеорит Саратов, метеорит Карманово и т. п.

Все знают, что такое метеоры. Малый камешек или песчинка, влетая в атмосферу Земли со скоростью в несколько десятков километров в секунду, начинает светиться из-за трения о воздух уже на высоте 120 км. Обычно метеор гаснет на высоте не более 70 км – песчинка «сгорает», и светиться больше нечему. «Сгорает» – это фигура речи, а не описание процесса. Из-за трения о воздух поверхность космического тела разогревается настолько, что приобретает пластичность, и молекулы воздуха буквально сдирают поверхность метеорита слой за слоем. Известны метеориты, чей пролет в атмосфере не сопровождался вращением, – они часто похожи на головки снарядов со следами «обработки» их атмосферой (рис. 72). Понятно, что метеорная песчинка будет «сработана» полностью задолго до соприкосновения с земной поверхностью, а метеорит может и уцелеть.


Рис. 72. Конический метеорит Каракол, обточенный атмосферой


Оставим пока в покое метеорные дожди, о которых время от времени сообщают СМИ. Поговорим о них позже. Сейчас нас интересуют только спорадические, то есть случайные, одиночные метеоры. Они могут прилетать из любой точки неба. Внезапно вспыхнул метеор, прочертил небо, секунда – и нет его. Красивое, но заурядное явление.

Метеоры ярче минус восьмой звездной величины называют болидами. Для сравнения: яркость полной Луны составляет -12,74 звездной величины. Наверняка многим читателям доводилось наблюдать болиды. Чаще всего причиной болида является камешек массой в несколько граммов, полностью сгорающий в атмосфере. Здесь надо еще сказать, что яркость болида (как и обычного метеора) зависит не только от его массы, но и от скорости вхождения в атмосферу. Маленький, но быстрый камешек начнет светиться раньше и будет светить ярче, но и сгорит быстрее. Медленный, но более массивный камешек начнет светиться на меньшей высоте и не даст столь яркого следа, зато он имеет некоторые (небольшие, впрочем) шансы достигнуть земной поверхности, потеряв лишь часть массы.

Если в атмосферу влетает большой камень, то он вызывает очень яркий болид. За ним тянется хвост дыма, а пролет небесного камня сквозь атмосферу сопровождается грохотом, напоминающим громовые раскаты. Очень яркие болиды видны и днем. Часто, хотя и не всегда, пролет яркого болида заканчивается падением метеорита.

Немногим (в процентном отношении) землянам повезло наблюдать такое событие. Автор этой книги, увы, может похвастать лишь одним наблюдением действительно яркого болида, сопровождавшегося слабым звуком, и никогда не прикасался к только что упавшему метеориту. Те, кому повезло больше, рассказывают, что свежевыпавший метеорит горяч лишь в тонком поверхностном слое и за считанные минуты остывает. Это и неудивительно, если учесть, что температура тела, нагреваемого Солнцем на расстоянии Земли, составляет 4 °C. Рассказы о якобы царящем в ближнем космосе жутком холоде, лишь немного превышающем абсолютный нуль, – такие же легенды, как мифы Древней Греции. Обычно свежевыпавший метеорит покрыт черной коркой и нередко издает весьма противный запах.

След метеорита в атмосфере чаще всего кажется прямым. На самом деле он прямой лишь вначале и загибается к Земле по мере потери метеоритом скорости. Когда потерявший скорость метеорит падает по вульгарной параболе, как простой камень, за ним, как правило, уже не тянется дымный шлейф. Изредка (один случай из тысячи) метеорит ведет себя в атмосфере странно: вместо более-менее прямого движения он выписывает дугу, никак не связанную с земным притяжением. Объясняется это просто: скорость вращения метеорита вокруг своей оси была очень уж высока, так что получился полет, известный в футболе как «резаный мяч». В пустоте такое тело летит, конечно, лишь по своей орбите без всяких выкрутасов, но при взаимодействии с набегающим потоком воздуха меняет траекторию с, грубо говоря, прямой на закрученную.

Недавно выпавшие метеориты особенно ценны для науки. В СССР лицу, доставившему метеорит в Комитет по метеоритам Академии наук, выплачивалась денежная премия. Выплачивается она и в США, однако «рыночная» стоимость метеорита гораздо выше. Существуют частные коллекционеры метеоритов, проводятся ежегодные ярмарки, аукционы и т. д. Продаются образцы метеоритов и у нас. Как следствие, с начала 90-х годов количество новых метеоритов, доступных российским ученым для исследования, устремилось к нулю.

Однако и в прошлые времена лишь 1–2% доставленных в Академию образцов оказывалось метеоритами. Слишком уж похожи на метеориты некоторые земные камни и продукты разнообразных технологий! Некоторые шлаки или плавленый базальт, использующийся для самых разных целей, имеют явственно оплавленную поверхность, способную ввести в заблуждение неопытного метеоритчика. К сожалению, до сих пор не создан атлас шлаков, напоминающих метеориты, но не являющихся ими.

Не раз метеориты попадали в дома, пробивали насквозь автомобили (рис. 73), застревали в заборах, кровлях и т. д. Говорят, будто как-то раз метеорит угодил прямо в корыто прачки. К описанным случаям утопления громадными метеоритами морских судов следует отнестись с известной долей осторожности: в таких случаях, как правило, не сохраняется доказательств в виде обломков метеорита, а свидетельские показания – не всегда надежная вещь, особенно когда речь идет о получении страховки. Были случаи падения мелких метеоритов, не сопровождавшиеся никакими особыми эффектами – просто камешки выпадали со скоростью свободного падения. Вообще диапазон скоростей метеоритов у поверхности Земли (и, соответственно, возможных разрушений) очень велик.

И все же большинство метеоритов падают на поверхность Земли с дозвуковой скоростью: обычно в диапазоне 50-150 м/с. Большинство, но не все.


Рис. 73. Этому автомобилю не повезло – его пробил метеорит


Скорость метеорита у земли определяется прежде всего массой метеорита и углом, под которым он входит в атмосферу. От угла зависит путь метеорита в воздухе и, естественно, время торможения. При очень малом угле, когда метеориту предстоит почти касательное столкновение с Землей, возможен эффект отскока от атмосферы – совсем как отскакивает плоский камешек от поверхности воды. И такие случаи были зафиксированы (методами радиолокации). Если же угол входа в атмосферу больше 3_4°, то космическому телу предстоит не очень-то веселое (с его «точки зрения») путешествие сквозь воздушную броню Земли.

В ней метеориту приходится весьма несладко. Молекулы воздуха тормозят его движение и выбивают молекулы с его поверхности. За счет торможения идет нагрев поверхности, что дополнительно стимулирует потерю метеоритом вещества. Подсчитано, что при вертикальном падении более 10 % первоначальной скорости может сохранить 1,5-метровый ледяной метеорит, 0,6-метровый каменный и о,2-метровый железный. Конечно, лишь в том случае, если в атмосфере не произойдет дробления тела.

А оно не только возможно, но и очень вероятно. Допустим, тело падает на Землю со скоростью 20 км/с. Тогда на высоте 30 км аэродинамические напряжения в нем составят 10 МПа (100 атмосфер), а на высоте 20 км достигнут почти 100 МПа (1000 атмосфер). Далеко не всякий метеорит выдержит такие нагрузки.

И действительно, очень часто метеориты раскалываются еще в воздухе, образуя от единиц до тысяч осколков. Упомянутый в начале этой главы метеорит, поставивший синяк американской домохозяйке, также являлся осколком, ибо до падения метеорита наблюдался взрыв болида и был найден еще один осколок массой 1,7 кг. Если осколков много, говорят о метеоритном дожде. Перечень наблюдавшихся метеоритных дождей довольно велик. Например, метеорит Юртук, упавший в 1932 году в Днепропетровской области, выпал в виде «дождя» (собрано 32 обломка). Гораздо более масштабный метеоритный дождь случился 12 февраля 1947 года в отрогах хребта Сихотэ-Алинь на Дальнем Востоке. В радиусе до 400 км наблюдался яркий болид с мощным дымным следом, который не рассеивался два часа. Далеко разносились грохот и гул. Когда до места падения добралась экспедиция Академии наук, то оказалось, что метеорит успел раздробиться в атмосфере и выпал «дождем» на характерной площади в виде эллипса («эллипс рассеяния») площадью 3 км2. Метеорит оказался железным. В тайге были найдены 24 кратера, диаметр наибольшего из них составил 27 м. Крупнейший обломок метеорита имел массу 1745 кг, а более мелкие обломки попадались тысячами. Многие из них зарылись в почву (теперь, после многих экспедиций, вооруженных металлоискателями, она в эллипсе рассеяния перекопана метра на два вглубь), другие просто торчали в стволах и ветвях деревьев. Всего было собрано около 27 т оплавленных железных обломков. И размеры кратера, выбитого наибольшим обломком, и высокие скорости более мелких кусков однозначно говорят о том, что метеорит, чей поперечник, по расчетам, составлял 2,5 м, а масса достигала 70 т, сохранил значительную часть своей космической скорости и раздробился сравнительно невысоко над землей – однако и не над самой поверхностью, поскольку мелкие обломки успели оплавиться со всех сторон.

Действительно, если метеорит разрушается в воздухе, то чаще всего это происходит на высоте 10–15 км. Иногда выше, иногда ниже – это в первую очередь зависит от механической прочности космического тела. В случае Сихотэ-Алиньского метеорита мы видим, что обломки не успели погасить скорость в атмосфере и выпали со скоростями, во всяком случае превышающими скорость свободного падения. Может показаться странным, что разрушился железный метеорит, поскольку мы привыкли к тому, что железные предметы довольно прочны. Но вспомним, какое железо в метеоритах. Дело не в том, что оно содержит примеси никеля, кобальта, меди, фосфора, серы и других металлов и неметаллов. Дело в том, что кристаллы железа в метеоритах – крупные и очень крупные. Многие земные кристаллы (например, каменной соли, кальцита, галенита, но не горного хрусталя!) раскалываются по спайности на меньшие кристаллы – кубические, ромбические и др. Если поверхность железного метеорита отшлифовать, затем отполировать и протравить слабой кислотой, то на ней проступит рисунок, напоминающий изморозь на окне (рис. 74). Этот рисунок называют видманштедтеновыми фигурами. У земного самородного железа не бывает никаких видманштедтеновых фигур.


Рис. 74. Видманштедтеновы фигуры


Оно и понятно: в отличие от самородного железа земного происхождения метеоритное железо образовалось в недрах древних, ныне разрушенных планетоидов с относительно постоянными на протяжении миллионов лет физическими условиями, благоприятствующими росту кристаллов. Видманштедтеновы фигуры суть не что иное, как проросшие друг сквозь друга кристаллы двух различных кристаллических форм железа – камасита и тэнита, различающихся содержанием никеля. Минералогам хорошо известны подобные проростки в земных минералах. Выше мы говорили о более чем метровом кристалле метеоритного железа (камасита) в метеорите Богуславка. Это, конечно, редкость, но факт, что кристаллы железа в метеоритах весьма велики и могут раскалываться по спайности. Вот и ответ на вопрос, почему танковая броня может выдержать удар снаряда, а железный метеорит разваливается на части от давления воздушного потока.

Все же каменные метеориты разваливаются в воздухе чаще железных. Самые крупные из найденных «цельных» метеоритов как раз железные. Крупнейшим считается метеорит Западная Гоба (чаще называемый просто Гоба), найденный в Намибии. Нет никаких свидетельств того, что его падение наблюдалось хотя бы древним человеком, 60-тонный метеорит, представляющий собой грубый параллелепипед, до сих пор лежит там же, где был обнаружен. Раньше он покоился просто в яме, теперь вокруг него сооружен маленький амфитеатр (рис. 75). Климат пустыни способствует тому, что метеорит практически не пострадал от коррозии.


Рис. 75. Метеорит Гоба


Кстати, широко распространенное мнение, будто метеоритное железо не ржавеет ни на воздухе, ни в воде, поскольку из-за высокого содержания никеля походит на нержавеющую сталь, не соответствует действительности. Почти все железные метеориты, достаточно долго пролежавшие в земле, сильно проржавели. Имеющийся у автора кусочек Сихотэ-Алиньского метеорита покрылся тонким слоем ржавчины всего за несколько лет пребывания в московской квартире. Естественно, в почве процессы окисления идут куда быстрее.

Это особенно хорошо видно при взгляде на метеорит Вилламет (Вилламетте), найденный в 1902 году в США и хранящийся в Американском музее естественной истории в Нью-Йорке (рис. 76). Точное время его падения не установлено. Около 12 500 лет назад ледник вынес его в долину реки Вилламет в штате Орегон.


Рис. 76. Метеорит Вилламет


Продолжительное пребывание в почве в местности с умеренным климатом сделало свое дело: ржавчина проела в теле метеорита многочисленные и весьма глубокие «зоны поражения», а последующее выветривание превратило их в каверны. Для местных индейцев метеорит служил культовым объектом в течение многих поколений. Считалось, что он упал с Луны (не так уж глупы были индейцы!) и служит связующим началом между стихиями огня, воды и воздуха. Дождевую воду, собравшуюся в кавернах метеорита, индейские знахари пытались использовать для лечения болезней. Также в нее обмакивали наконечники стрел. Масса метеорита составляет 15,6 т, но первоначально она была значительно больше, не достигая, впрочем, массы метеорита Гоба.

Как видим, эти два метеорита прорвались сквозь атмосферу без фрагментации. Еще несколько железных метеоритов имеют массу свыше 10 т. Существуют сведения о колоссальном метеорите, будто бы находящемся в пустыне Ардар (Мавритания) и имеющем длину 100 м при высоте 45 м. Масса такого метеорита (если он действительно существует) должна быть около 100 тыс. т. Этот метеорит еще не исследовался учеными. В Европу был доставлен его (его ли?) фрагмент, однозначно признанный фрагментом железного метеорита.

Сколь бы фантастичными ни казались подобные сообщения, отвергать их с порога, видимо, не стоит. Колоссальный железный метеорит, лежащий в пустыне «куском», – это, конечно, нонсенс. Однако все возможно. Показало же бурение в Овраге Дьявола наличие на глубине свыше 400 м большой массы никелистого железа! Следовательно, возможно «захоронение» метеорита в земных породах без дробления его в атмосфере или при ударе. Ветровая эрозия земной поверхности, особенно активная в пустынях, вполне может обнажить метеорит-гигант спустя геологически непродолжительное время. Во всяком случае, интрига пока сохраняется…

В чисто каменных метеоритах тоже есть железо: около 25 % по массе. Оно, однако, находится там в виде химических соединений, преимущественно окислов и силикатов. В каменных метеоритах много кислорода, кремния и магния; вообще же их состав напоминает земные породы, особенно поднятые с больших глубин. Еще один аргумент в пользу теории (по существу никем уже не оспариваемой) о том, что как «нормальные» астероиды, так и выпадающие на Землю метеориты являются осколками древних планетоидов, погибших при взаимных столкновениях.

Возраст метеоритов известен и почти одинаков: около 4,5 млрд лет. Содержащиеся в старой литературе более почтенные оценки возраста метеоритов (скажем, 7,6 млрд лет) следует считать ошибочными, связанными с тогдашним несовершенством радиоизотопных методов датировки, тогда как сейчас эти методы дают погрешность не более 1–2%. Сходство возрастов метеоритов имеет минимум два следствия.

Во-первых, первичные планетоиды между орбитами Марса и Юпитера образовались примерно в то же время, что и Земля, и образовались достаточно быстро, максимум за 100 млн лет, а скорее всего, гораздо быстрее. Большинство из них успело просуществовать вполне заметное время. Во всяком случае, гравитационная дифференциация вещества в них не только началась, но и успела далеко продвинуться. О том же, кстати, говорят теоретические выкладки.

Во-вторых, в Солнечной системе, по-видимому, нет «пришельцев» – метеоритов из других звездных систем. Если же они все-таки есть, то крайне малочисленны и практически не имеют шансов попасть на Землю. А жаль! Пройдет еще невесть сколько лет (или столетий?), прежде чем в руки ученых попадет твердое вещество, образовавшееся вблизи другой звезды в совсем другое время и, возможно, совсем на другом краю Галактики…

Пока же приходится исследовать то, что сформировалось у нас «под боком», в Солнечной системе. Помимо грубого деления метеоритов на железные, железо-каменные, каменные и углистые хондриты существует более детальная классификация. Она отражает минеральный состав и связана с классификацией астероидов, разделенных на несколько типов по их альбедо.

К типу С принадлежат астероиды с низком альбедо. Их состав: силикаты и углерод. Это самый распространенный тип астероидов – но не метеоритов. Метеоритный аналог – углистые хондриты.

У типа S альбедо умеренное. Состав: силикаты и металл. Типичные представители: Флора, Эвномия, Гаспра, Ида. Свободного железа в них до 25 %. По-видимому, эти астероиды представляют собой осколки нижней мантии довольно большого родительского тела, успевшего заметно проэволюционировать. Среди метеоритов им соответствуют железо-каменные метеориты.

Тип М объединяет астероиды также с умеренным альбедо, но более высоким содержанием металлов. Об их составе можно сказать так: металл с примесями. Метеоритный аналог: железоникелевые энстатитовые хондриты. (Под хондритами понимаются метеориты с хондрами – примесями в виде более или менее крупных включений металла, обычно округлых. Энстатит – минерал из группы пироксенов, класса силикатов.)

К типу Е относятся чисто каменные астероиды с высоким альбедо и силикатным составом. Этому типу соответствуют энстатитовые ахондриты, то есть каменные метеориты, лишенные хондр.

У типов R и Q альбедо варьирует в пределах от среднего до высокого. Состав: оливин, пироксен и металл. Метеоритный аналог: обычные хондриты.

К типу V принадлежат каменные астероиды с составом: пироксен + фелдспар. Метеоритные аналоги отсутствуют.

Наконец, тип А объединяет астероиды, состоящие из оливина и металла. Альбедо умеренное. Этим астероидам соответствуют брахиниты.

Больше всего в космосе астероидов типов С, S и М. В Главном поясе их количественное соотношение составляет 7:5:1. Однако среди астероидов, сближающихся с Землей, соотношение иное: 3:7:1, а если брать только найденные метеориты, то количество углистых хондритов среди них еще меньше: 1–2%. В общем-то это неудивительно, если учесть низкую механическую прочность этого типа метеоритов. Фрагментация на довольно большой высоте и полное сгорание обломков в атмосфере – вот, по-видимому, удел большинства из них.

Странно, что астероиды типа Q обнаружены только среди астероидов, сближающихся с Землей, а в Главном поясе почему-то нет. Эту загадку еще предстоит разрешить.

Полагаю, вы заметили, что, говоря об астероидах и каменных метеоритах, нам постоянно приходится упоминать силикаты.

Это и неудивительно: кремний и кислород – чрезвычайно распространенные во Вселенной элементы и, естественно, одни из основных «строительных материалов» для твердых тел. В земной коре доля силикатов достигает 80% по массе. Весьма распространенный (хотя бы в виде песка) на земной поверхности кварц – оксид кремния – сильно уступает по распространенности солям кремниевой кислоты – разнообразным силикатам. Речной или карьерный песок совсем не обязательно кварцевый – он может быть продуктом разрушения тех или иных полевых шпатов (тоже силикаты), причем это даже более вероятно. То же самое, и с еще большей силой, наблюдается в мантии. Базальты – те же силикаты. Силикатом является и оливин (помните «оливиновый пояс» из «Гиперболоида инженера Гарина»?), имеющий химическую формулу (Mg, Fe)2SiO4, и если содержащие оливин метеориты выведены в отдельный тип, то это сделано только потому, что такие метеориты многочисленны и отличны от прочих.

Словом – скучно для дилетанта, а порой и для геолога. Разнообразные силикаты и железо, железо и разнообразные силикаты… Немного соединений серы и фосфора – обычно в виде мельчайших включений, выглядящих на полированной поверхности метеорита под микроскопом как золотистые искорки. Совсем редко – мелкие (доли миллиметра) кристаллики алмазов. Еще некоторые минеральные включения. И – практически всё. Нет даже намека на огромное минеральное богатство, характерное для нашей планеты.

Ничего удивительного. Если на планетоиде нет текучей воды и заведомо нет жизни, то какого же минерального богатства можно ожидать? Откуда ему взяться? В отсутствие воды и жизни на планетоиде может реализоваться лишь ограниченный набор физических условий, в которых возникают минералы. Не зря на Земле их насчитывается несколько тысяч – куда больше, чем в метеоритах!

Правда, в углистых хондритах неоднократно было найдено органическое вещество: аминокислоты, карбоновые кислоты, простые и даже сложные сахара, а также несколько родственных сахарам кислот и спиртов, в частности глицерин. Из этого факта родилась популярная гипотеза: жизнь на Земле возникла из «материала», доставленного из космоса астероидами и кометами. Однако от несложных органических соединений до такого сложнейшего явления, как жизнь, «семь верст и все лесом» – это первое. В метеоритном органическом веществе отсутствует «хиральная чистота», обязательная для органики живых организмов, – это второе. И третье: откуда следует, что физические условия на астероидах и кометах сильнее благоприятствовали органическому синтезу, чем условия на древней Земле? Похоже, дело обстояло как раз наоборот. Почти наверняка какое-то количество несложной органики попадало на катархейскую Землю из космоса, но оно не шло ни в какое сравнение с объемом той же самой органики, синтезирующейся на самой Земле в результате добиологических процессов. Нет никаких оснований утверждать, что «первотолчком» к возникновению жизни на Земле послужила «гуманитарная помощь» из космоса.

В качестве «экзотики» можно еще упомянуть о кристалликах каменной соли, обнаруженных в метеорите, упавшем в 1998 году в Техасе, США. Этот метеорит оказался в руках ученых спустя менее двух суток после падения. Исследователям пришлось признать, что кристаллики соли в теле метеорита имеют космическое происхождение. В соляных кристалликах обнаружены крошечные пустоты, заполненные водой. Одновременно та же группа ученых сообщила о найденных капельках воды в теле другого метеорита.

Это как будто говорит о том, что 4,5 млрд лет назад вода в крайне молодой Солнечной системе не была редкостью. Хотя… она и теперь далеко не редкость. Ледяные панцири спутников больших планет и кометы указывают на это с полной определенностью. Пожалуй, даже странно, что вода в метеоритах не была обнаружена раньше. Иной вопрос: имелась ли она в жидком виде на поверхности тех злосчастных планетоидов, что породили Главный пояс астероидов? Скорее нет, чем да.

О метеоритах можно говорить еще долго и детально: описывать многочисленные случаи падения (рис. 77), вид и состав конкретных метеоритов и т. д. Пожалуй, в популярной книжке нет смысла этого делать. Зато есть смысл поговорить о том, сколько всего в Солнечной системе «каменной мелочи».


Рис. 77. Метеоритный кратер


Самое наглядное ее проявление – зодиакальный свет. В южных широтах (обычно не более 50° широты) в весеннее время после захода Солнца и наступления темноты в отсутствие Луны и при хорошей прозрачности неба можно видеть слабо светящийся туманный конус, наклонно поднимающийся из-за западного горизонта. В осеннее время то же явление можно наблюдать на востоке перед рассветом. Угол наклона конуса к вертикали равен географической широте места наблюдения. Чем ближе к экватору, тем ярче зодиакальный свет и тем вертикальнее «высовывается» из-за горизонта конус. В экваториальных областях яркость зодиакального света сравнима с яркостью Млечного Пути. В редких случаях и только при безупречно прозрачном и темном небе два конуса – западный и восточный – сливаются. В месте их контакта порой наблюдается противосияние – размытое округлое пятно света, выглядящее как вздутие на слабо светящейся полосе.

Что же это такое – зодиакальный свет?

Об этом говорит сама его «геометрия». В пределах Солнечной системы путешествуют по своим орбитам многие миллиарды мелких астероидов и просто камней размером от глыб до песчинок и пылинок. Вся эта несусветная толпа малых и мельчайших тел концентрируется к плоскости эклиптики, образуя колоссальный диск, утолщенный посередине. Мы тоже находимся в плоскости эклиптики и видим диск с ребра – утолщенный ближе к Солнцу и утончающийся по мере удаления от него. Спектр зодиакального света однозначно показывает, что светят (отраженным светом, естественно) именно камни, камешки и пылинки, а не межпланетный газ. Природа противосияния тривиальна: частицы, расположенные дальше от Солнца, чем Земля, отражают свет всей поверхностью, как Луна в полнолуние, а не частью ее, как, скажем, Луна в первой четверти.

В средних широтах нужны особое везение и настойчивость, чтобы увидеть зодиакальный свет – особенно в последние десятилетия, когда световое загрязнение неба бытовыми и промышленными источниками света увеличилось колоссально. Автору этой книги, увы, лишь раз довелось наблюдать зодиакальный свет, причем не в России, а несколько южнее – в Эгейском море. Да и то мешал свет городков и деревень на греческих островах. Однако автору известно об успешных наблюдениях зодиакального света гораздо севернее – в Воронежской области, например.

Короче говоря, камней, летающих в пределах Солнечной системы, не просто много, а очень-очень много. Правда, и пространство, в котором они распределены, очень даже не маленькое. Во всяком случае, американские «Пионеры» и «Вояджеры» пролетели сквозь Главный пояс астероидов без каких бы то ни было столкновений, грозящих им повреждением. Были столкновения с крупными пылинками массой в десятки миллиграммов, не приведшие к поломке бортовой аппаратуры, – и не было ни единого столкновения с более крупными телами. Показательно, не правда ли?

Что до нас, остающихся на Земле, то вероятность «поймать» на голову упавший с крыши кирпич и особенно сосульку на много порядков выше вероятности погибнуть или получить ранение вследствие падения метеорита. Будем жить спокойно.


Категория: УДИВИТЕЛЬНАЯ СОЛНЕЧНАЯ СИСТЕМА | Добавил: tineydgers (31.12.2012)
Просмотров: 1501 | Рейтинг: 0.0/0
» Поиск
» АСТРОНОМИЯ

УДИВИТЕЛЬНАЯ
  АСТРОНОМИЯ


ЗАГАДОЧНАЯ СОЛНЕЧНАЯ
  СИСТЕМА


АСТРОНОМИЯ В ВОПРОСАХ И
  ОТВЕТАХ


УДИВИТЕЛЬНАЯ
  КОСМОЛОГИЯ


КРОССВОРДЫ ПО АСТРОНОМИИ

» ИНФОРМАТИКА

ЗАНИМАТЕЛЬНАЯ
  ИНФОРМАТИКА


К УРОКАМ
  ИНФОРМАТИКИ


СПРАВОЧНИК ПО
  ИНФОРМАТИКЕ


ТЕСТЫ ПО ИНФОРМАТИКЕ

КРОССВОРДЫ ПО
  ИНФОРМАТИКЕ

» ОБЩЕСТВОЗНАНИЕ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ В 7 КЛАССЕ


ТЕСТЫ. 9 КЛАСС

САМОСТОЯТЕЛЬНЫЕ
  РАБОТЫ. 9 КЛАСС


КОНТРОЛЬНЫЕ РАБОТЫ В
  ФОРМАТЕ ЕГЭ


ШКОЛЬНЫЕ ОЛИМПИАДЫ
   ПО ОБЩЕСТВОВЕДЕНИЮ

» ХИМИЯ
» ОБЖ

ЧТО ДЕЛАТЬ ЕСЛИ ...

РЕКОРДЫ СТИХИИ

РАБОЧИЕ МАТЕРИАЛЫ К
  УРОКАМ ОБЖ В 11 КЛАССЕ


ПРОВЕРОЧНЫЕ РАБОТЫ ПО
  ОБЖ


ТЕСТЫ ПО ОБЖ. 10-11 КЛАССЫ

КРОССВОРДЫ ПО ОБЖ

» МХК И ИЗО

СОВРЕМЕННАЯ
  ЭНЦИКЛОПЕДИЯ ИСКУССТВА


ВЕЛИКИЕ ТЕАТРЫ МИРА

САМЫЕ ИЗВЕСТНЫЕ
  ПАМЯТНИКИ


МУЗЕЕВ МИРА

ВЕЛИКИЕ СОКРОВИЩА МИРА

СОКРОВИЩА РОССИИ

ИЗО-СТУДИЯ

КРОССВОРДЫ ПО МХК

» ЕСТЕСТВОЗНАНИЕ

ЕСТЕСТВОЗНАНИЕ. БАЗОВЫЙ
  УРОВЕНЬ. 10 КЛАСС


УДИВИТЕЛЬНАЯ ИСТОРИЯ
  ЗЕМЛИ


ИСТОРИЯ ОСВОЕНИЯ ЗЕМЛИ

ВЕЛИЧАЙШИЕ
  АРХЕОЛОГИЧЕСКИЕ ОТКРЫТИЯ


УДИВИТЕЛЬНЫЕ ОТКРЫТИЯ
  УЧЕНЫХ


РАЗВИВАЮШИЕ ЭКСПЕРИМЕНТЫ
  И ОПЫТЫ ПО
  ЕСТЕСТВОЗНАНИЮ


САМЫЕ ИЗВЕСТНЫЕ
  НОБЕЛЕВСКИЕ ЛАУРЕАТЫ

» ГОТОВЫЕ СОЧИНЕНИЯ

РУССКИЙ ЯЗЫК

РУССКАЯ ЛИТЕРАТУРА

ЗАРУБЕЖНАЯ ЛИТЕРАТУРА
  (на русск.яз.)


УКРАИНСКИЙ ЯЗЫК

УКРАИНСКАЯ ЛИТЕРАТУРА

ПРИКОЛЫ ИЗ СОЧИНЕНИЙ

» ПАТРИОТИЧЕСКОЕ ВОСПИТАНИЕ
» УЧИТЕЛЬСКАЯ
» МОСКВОВЕДЕНИЕ ДЛЯ ШКОЛЬНИКОВ

ЗНАКОМИМСЯ С МОСКВОЙ

СТАРАЯ ЛЕГЕНДА О
  МОСКОВИИ


ПРОГУЛКИ ПО
  ДОПЕТРОВСКОЙ МОСКВЕ


МОСКОВСКИЙ КРЕМЛЬ

БУЛЬВАРНОЕ КОЛЬЦО

» ЭНЦИКЛОПЕДИЯ ОБО ВСЕМ НА СВЕТЕ
» ПОЗНАВАТЕЛЬНО И ЗАНИМАТЕЛЬНО

ДИКОВИНКИ СО ВСЕГО МИРА

УДИВИТЕЛЬНАЯ ЛОГИКА

ЗАНИМАТЕЛЬНАЯ
  ПСИХОЛОГИЯ


МИНЕРАЛЫ И ДРАГОЦЕННЫЕ
  КАМНИ


УДИВИТЕЛЬНАЯ АРХЕОЛОГИЯ

ДИВНАЯ ПАЛЕОНТОЛОГИЯ

» БЕСЕДА ПО ДУШАМ С ТИНЕЙДЖЕРАМИ

МЕЖДУ НАМИ ДЕВОЧКАМИ

МЕЖДУ НАМИ МАЛЬЧИКАМИ

НАС ЖДЕТ ЭКЗАМЕН

» Статистика

Онлайн всего: 164
Гостей: 164
Пользователей: 0
» Вход на сайт

» Друзья сайта
Copyright MyCorp © 2024 Яндекс.Метрика Рейтинг@Mail.ru Каталог сайтов и статей iLinks.RU Каталог сайтов Bi0